
Dynamic Photonic Lightpaths in the

StarPlane Network

Paola Grosso a,∗ Damien Marchal a Jason Maassen b

Eric Bernier c Carol Meertens a Li Xu a Cees de Laat a

aSystem and Network Engineering Group, Universiteit van Amsterdam, Kruislaan
403, 1098 SJ Amsterdam, The Netherlands

bDept. of Computer Science, Vrije Universiteit, De Boelelaan 1081A, 1081 HV
Amsterdam, The Netherlands

cNortel Networks, 3500 Carling Avenue, Ottawa, Ontario K2H 8E9, Canada

Abstract

The StarPlane project enables users to dynamically control network photonic paths.
Applications that run on the Distributed ASCI Supercomputer (DAS-3) manipulate
wavelengths in the Dutch research and education network SURFnet6.

The goal is to achieve fast switching times so that when the computational pattern
in the computing clusters changes, the underlying network topology adapts rapidly
to the new traffic flow. StarPlane develops: - the software to perform optimal traffic
engineering; - the management plane to map the users’ request into directives for the
network control plane, as well as the integration to the DAS-3 Grid middleware. We
present here some preliminary results obtained with few selected Grid applications
that make use of StarPlane.

Key words: Photonic networks; application-controlled networks;
wavelength-selective switches.

1 Introduction

StarPlane is a research project funded by the Netherlands Organization for
Scientific Research (NWO) and carried out at two Dutch Universities: the
University of Amsterdam (UvA) and the Vrije Universiteit Amsterdam (VU).

∗ Corresponding author.
Email address: grosso@science.uva.nl (Paola Grosso).

Preprint submitted to Elsevier February 13, 2008

The goals of the project is to build an application-controlled photonic net-
work. The e-Science community relies nowadays on distributed collaborations
with researchers interacting remotely with each other and exchanging large
datasets. Such scientific applications require better performance, isolated en-
vironments and guaranteed scheduling.

The regular Internet is based on best-effort Layer3 IP routing; it has great
flexibility but it is slow and unpredictable; on the other hand, dedicated light-
paths as the ones available in lambda Grids(1), offer good performance and
good guarantees on the Quality of Service (QoS). Giving end users access to
a dedicated connection has been implemented in many of the current research
and education networks (NRENs), among them the Dutch NREN SURFnet.
SURFnet6 deploys multiple fiber optic rings that connect academic and re-
search institutes around The Netherlands. One of these rings connects the
universities in Leiden, Delft and Amsterdam, the locations of the DAS-3 clus-
ters. Into this ring eight wavelengths constitute the StarPlane lightpaths. The
distinctive features of StarPlane in comparison with other similar initiatives
are the accent on fast reconfiguration times, in the orders of seconds or sub-
seconds, the use of photonic equipment in the core, and tight coupling between
the user application and the networking services offered.

The rest of the article is organized as follows. Sec. 2 outlines network archi-
tecture of StarPlane; Sec. 3 describes the technical challenges related to the
setup of the full end-to-end paths; Sec. 4 introduces the middlewares aspect
and most specifically the management plane of StarPlane; Sec. 5 gives details
on some of the most promising applications currently using StarPlane.

2 The StarPlane network

The Distributed ASCI SuperComputer (DAS) is a collection of five clusters
located in four Dutch Universities: the UvA and the VU in Amsterdam, the
University of Leiden and the Technical University in Delft. DAS is now in
its third implementation and is called DAS-3. The 270 dual-CPU nodes are
integrated into a single large-scale distributed system that provides a test-bed
for Grid applications and distributed systems. In the following two sections
we describe the network setup from the cluster to the photonics network and
in the core of the SURFnet6.

2

2.1 From the cluster node to SURFnet6

Each of the five clusters has a head node and number of regular cluster nodes,
from a minimum of 32 in Leiden to a maximum of 85 at the VU. All nodes
have three ways to communicate: the local, the inter-cluster and the wide-area
connection. Fig.1 shows a schematic representation of the network architecture
used by DAS-3 nodes.

Figure 1. Network architecture in DAS-3

The local connections are Ethernet links to the University network, and from
there to the regular Internet. The bandwidth is 1GbE for the cluster nodes
and 10GbE for the head nodes. These links are used to move data between
clusters in different locations when the application does not explicitly request
the use of the faster and dedicated StarPlane links.
Cluster nodes in the same location communicate with each other using the
high-bandwidth and low-latency interconnection via a Myrinet switch. The
Myrinet protocol is particularly useful for parallel computing techniques based
on MPI - Message Passing Interface.
Last, all cluster nodes have access to the photonic network of StarPlane. The
Myrinet switches in all sites are equipped with an Ethernet card. 10 GE links
go from this card to the OME (Optical Multi-service Edge) switch in the
SURFnet domain. It is the OME that maps each of the Ethernet links into a
wavelength of the photonic core.

2.2 CPL

CPL (Common Photonic Layer) is the Nortel WDM equipment used in SURFnet6
to deliver Adaptive All Optical Intelligent Networking solutions. In includes

3

all components necessary to carry DWDM signals on optical fibers. SURFnet
uses the optical multiplexers, optical amplifiers and the eROADM (Enhanced
Reconfigurable Optical Add/Drop Multiplexer). The eROADM is a CPL func-
tional module that enables dynamic, on the fly, optical branching to up to five
different optical paths in addition to facilitating basic add/drop of individual
wavelengths. Any wavelength (color) can be added or dropped on any port.

Figure 2. Overview of the Common Photonic Layer in StarPlane

In StarPlane there are two eROADM sites capable of switching the signals
coming from 3 pair of fibers each. They allow to route wavelengths from and
to any of the four DAS-3 locations. Fig. 2 shows the logical connectivity of pho-
tonic network implemented. The OME6500s at the DAS-3 sites translate the
optical signal into a predetermined wavelength and insert it through the CPL
multiplexer on the photonic network. The eROADMs in Amsterdam switch
the wavelengths toward the final destination where the CPL de-multiplexer
isolates the individual wavelength for delivery to the OME.

The eROADM are built out of WSS (Wavelength Selective Switch). The WSS
can connect up to five different nodes at an eROADM site while supporting
local add/drop traffic. These devices route wavelengths in and out of fibers:
given a series of wavelengths coming into the device, they can send subsets
of colors to different outputs. A WSS has incoming and outgoing fibers, and
Micro Electro Mechanical mirrors, that tilt to reflect appropriate wavelengths
toward the right output ports.

At the heart of CPL resides the Domain Optical Controller (DOC), a user-
accessible end-to-end intelligent provisioning and management software that
enables in-service insertion and deletion of wavelengths, all the while maintain-
ing the active network channels in an optimized state. In addition, the DOC
tracks and corrects for aging and very slow changes in operating conditions to
ensure consistent system reliability and continual optimal performance.

In order to maintain the performance of all channels to maximum performance

4

DOC uses a multitude of monitoring points and actuators during wavelength
insertion and optical switching. Due to the worst case engineering design for
DOC the typical insertion and switching time for a wavelength could be in
the order of 10 minutes. As a proof of concept for Starplane we will bypass
the DOC and command the WSS directly in order to test the gain obtained
through fast switching of the wavelengths through optical network.

3 StarPlane Engineering Challenges

In StarPlane there are two network layers to be manipulated to achieve path
(re-)configuration times of the order of seconds or ultimately sub-seconds:
Layer 0, for the CPL equipment in the core of the network, and Layer 2, from
the SURFnet6 OME to the cluster nodes. Efficient configuration of both these
layers has its own unique challenges. Let’s define t as the total setup time of
a StarPlane lightpath, bwl the lighpath bandwith, bwi as the bandwidth over
the Internet cloud and d as the amount of data that have to be transmitted.
The equality point, when both transmission paths are equivalent, is given by
the following equation:

d =
t ∗ (bwl ∗ bwi)

bwl − bwi

(1)

From Eq.1, the lower the setup time the smaller the amount of data needed
to make a StarPlane path equivalent to the Internet path; with an amount
of data larger than this minimum the dedicated path becomes the preferred
choice for transmission. The setup time in StarPlane is the sum of the times
needed in the core at Layer 0 and at the edges at Layer 2: t = tL0 + tL2. The
goal of StarPlane is to make the setup time t as small as possible.

All the wavelengths in the StarPlane color band are now operational. The
lightpaths passing through the eROADM can be switched on demand using
DRAC, the management tool from Nortel that we will describe in more detail
in 4.1. The (re-)configuration time at Layer 0 (tL0) is determined by the
time that DRAC takes to moves one color from one destination to another.
Currently this time is in the order of 10 minutes, as we describe in Sec. 2.2.
As there are no easy solutions to decrease this setup time we are considering
a caching approach, where the StarPlane management plane maintains all the
lighpath pre-configured, also in absence of requesting applications. Subsequent
requests for path will be served in few seconds instead of minutes as the paths
are already available at Layer 0 and do not need to be configured on the fly.

As the photonic paths provide an isolated environment at Layer 0 we need to
build a similar infrastructure at Layer 2, the highest network layer present in

5

StarPlane. This means providing a node-to-node isolated virtual network. As
we described in Section 2, applications using the lightpaths first need to move
data through the Ethernet card on the Myrinet switches. Unfortunately there
is very little control on the behavior of these cards. To provide an isolated
Layer 2 environment in the lowest setup time possible (smallest tL2) we need
both VLAN functionalities as well as the possibility to configure Spanning
Tree Protocol (STP) priorities as to obtain the optimal Ethernet topology.
We are currently looking at the adding extra Ethernet switches between the
Myrinet and the OME to achieve this.

4 StarPlane middlewares

In StarPlane DRAC provides the photonic switching service, the StarPlane
Management Plane (SPMP) builds new services used by the higher level mid-
dlewares and user-applications, and the Grid execution service, KOALA, is in
charge of the overall orchestration.

4.1 DRAC

The primary goal of DRAC (Dynamic Resource Allocation Controller) is to
enable a high degree of coupling between applications and networks, resulting
in an improved application network experience, while optimizing equipment
investments and operational expenses. Applications have the means to directly
drive their share of network resources within a pre-defined authorization pol-
icy. Network resources include bandwidth, quality of service (QoS), security,
and more.

DRAC provides a service interface with an abstracted view of the network. It
enables applications to control the network, yet without requiring applications
to interface directly with diverse and constantly evolving network protocols,
features, and devices. The interface to applications is bi-directional, enabling
network performance and availability information to be abstracted upwards
towards the application.

In StarPlane DRAC was designed to control the CPL network and to allow
for inter-layer routing from Layer 0 to Layer 2 of the network. When an ap-
plication needs to reconfigure the underlying network, it reserves a point to
point link from DRAC using a web service interface. DRAC then computes
the availability of the connection, determines the best route for the signal and
requests the connection from CPL using the Domain Optical Controller. The
DOC in turn actions the eROADM to create the connection.

6

4.2 The StarPlane Management Plane: SPMP

The StarPlane Management Plane services are accessible through three sets
of functions: one is for querying the service availability, one is to reserve the
service and one to finally use it. The SPMP wraps around the photonic services
provided by DRAC. Nevertheless as StarPlane relies on the public interfaces
of DRAC, the added abstraction layer reduces its capability to take optimal
decisions in terms of scheduling and resource allocation. This is circumvented
by requesting all the colors in advance, the caching strategy we mentioned
already in Sec. 3. The alternative approach to the ”abstraction problem” would
be to have DRAC offering a bypass interface with reduced abstraction.

To use StarPlane an application has to negotiate its requested services, and
their quality, using the querying interface. The expressiveness of the query
language is essential. Most of the query languages offer a set of hardcoded
possible queries, hardcoded constraints and reduced and/or conjunctions be-
tween queries. We are exploring if advanced queries are desirable and suitable
for StarPlane. One of the possible choices for extended expressiveness is to
use logical programming (2) and semantic-based logical reasoning. A logi-
cal program contains variables connected by logical formulas (constraints).
The program is said to be satisfiable if for all of its variables a value can
be assigned that does not violate any of the constraints. The major differ-
ence with prior approaches is that users can implement their own complex
functions and constraints. An analogy can be made with SQL, where a clas-
sical query looks like select X, Y in where X.capacity >= 10 and

Y.capacity <= 10., while logical programming is closer to the recent recur-
sive functions extension of SQL (3). Once a query has been satisfied, a binding
between the variables and the service has been computed and it becomes pos-
sible for the user to directly use the resource or to reserve it. The result of the
reservation is a reservation ID, that allows at run-time to activate the use of
the locked resources or to cancel the reservation.
Interactions between DRAC and the SPMP, as well as interactions between
the higher level Grid managers and the SPMP are mediated via Web Services
interfaces.

4.3 Grid execution service: KOALA

Each DAS-3 clusters provides a local resource scheduler, SGE (4). Jobs can
also be submitted to the individual clusters by using Globus (5). In addition to
the local schedulers, DAS-3 also offers the Koala grid scheduler (6; 7), which
currently offers both processor and data co-allocation. Processor co-allocation
can be used to run jobs that simultaneously require multiple execution sites.

7

As the local schedulers do not support processor reservation, the processor
co-allocation can only provide a best-effort Quality of Service. If required,
Koala can also transfer input files needed by the application to the appropriate
sites. Since these files can potentially be large, Koala also performs data co-
allocation, by taking into account the necessary time to transfer the files to the
execution sites. When multiple potential execution sites are available, it will
choose the one(s) which require the least time for the file transfers. Finally,
Koala also offers fault-tolerance. When (part of) a job execution fails, the job
will be aborted and can resubmitted automatically. The job submission will
only fail if the submission attempts exceed a user-defined threshold.

In StarPlane we are planning several extensions to Koala to support network
reservation. The first extension is to have Koala taking advantage of the dy-
namic optical network when performing data co-allocation. Instead of simply
estimating file transfers times using the internet, the available lightpaths and
their setup times can also be taken into account when determining the optimal
strategy. The outcome of this heuristic may vary substantially depending on
the photonic setup time that can be achieved (see Eq. 1). Even in the current
state, where setup times are of the order of 10 minutes, transfer of very large
input files using lightpaths instead of the regular Internet is already beneficial.

A second extension to Koala would allow the user applications to allocate
network bandwidth as part of their job. Currently, to submit a job, the user
provides an RSL (5) description of the job to Koala. This job description
format can easily be extended with an additional field which describes the
required network bandwidth between the job components. An example of this
extended description is given in Appendix A.1. By using this information,
Koala can then request a lighpath between the execution sites. By requesting
lightpath availability information from the StarPlane Management Plane and
processor availability information from the local job schedulers, Koala can
estimate at what time both the requested resources are likely to be available.

4.4 Other Grid services

In StarPlane we are also experimenting with the SmartSocket and at the
Enhanced Socket API communication libraries and with the JavaGAT.

SmartSockets (8) is a Java library that simplifies creating socket connections
in environments where the connectivity is severely limited by firewalls, net-
work address translation (NAT) or non-routed networks. The primary focus
of SmartSockets is on ease of use. It automatically discovers a wide range of
connectivity problems and attempts to solve them with little or no support
from the user, using solutions such as port forwarding, TCP splicing and SSH

8

tunneling. In addition, SmartSockets can also automatically select the most
appropriate network interface on multi homed machines (which have multiple
network addresses). As a result, applications using SmartSockets automati-
cally use the StarPlane network once the photonic network is configured. No
changes to the application are required.

Figure 3. Benchmarking of two client-server applications executed on two clusters.
In(1) only one traffic flow through the ethernet network, in (2) the second applica-
tion is started impacting the first one. In (3) the first application receives a lighpath
and redirect the traffic to it; in (4) the same happens to the second application

Implemented in C, the Enhanced Socket API is an experimental library that
implements low level interaction between the communication library itself and
StarPlane. The library can request lighpaths to SPMP if the two endpoints are
on different clusters. This library mimics the BSD-socket API and provides
a hijacker-wrapper based on dynamic loading (LD PRELOAD) that allows
to use the new functions without requiring any modification or recompilation
of the user applications. Fig. 3 is a capture of a the run of two client-server
applications that have been hijacked. The client and server are on two different
cluster sites. It can be seen at the startup that the regular Ethernet network is
used (point 1 and 2 in the drawing). The throughput for the two applications
is 110 MB/s (point 2). Once a lighpath is available (point 3 and 4), the library
redirects the traffic to the myrinet interface and StarPlane. When lighpaths
are used the throughput per application is around 400MB/s (800MB/s in
total).

The JavaGAT (9) project can also be extended to take advantage of the dy-
namic lighpath of StarPlane. The JavaGAT is a middleware abstraction layer.
It provides a middleware-independent API, and contains robust mechanisms
to automatically map these API calls onto whatever middleware is available
at runtime. As a result, grid application programmers only need to learn a

9

single API to obtain access to the entire grid. JavaGAT has a modular design
that allows it to easily be extended with support for other grid middleware
layers. Therefore, by adding new modules to the JavaGAT that interface with
the StarPlane Management Plane, the new dynamic networking services can
be used by the user-applications based on the JavaGAT API. Although some
applications may want to use the dynamic networking functionality explicity,
many other applications may also profit from StarPlane. By extending the
existing JavaGAT modules to make use of the dynamic network whenever it
is appropriate, the performance of many JavaGAT operations (such as site
to site file transfers) could be significantly improved. Many JavaGAT based
applications can benefit from these improvements without the need to change
a single line of application code.

5 Applications on StarPlane

We will now take a closer look at two applications, Awari and SCARIe, cur-
rently using StarPlane.

Awari is an application that solves an ancient two-player board game using
retrograde analysis. This board game is played using 48 stones divided over 12
pits (traditionally, holes in the ground). Players can move and capture stones
according to some rules (10). Although Awari is specifically designed to solve
a game, its behavior is very similar to model checking and verification appli-
cations (11). These applications, like Awari, focus on searching a state space
which can be very large. The state space searched in Awari contains approxi-
mately 900 billion board positions. The only way to handle such a large state
space is by distributing it over multiple machines. This distribution, however,
also results in a extremely high communication volume. On a single cluster,
running on 144 nodes, Awari required a sustained total bandwidth of almost
29 Gbits/s for a large portion of the runtime. Awari is implemented using
asynchronous communication. Although this does not reduce the communi-
cation volume in any way, it does make the application latency insensitive,
thereby improving its performance. Earlier work at the VU (10) showed that
it was possible to completely solve the game of Awari on a single cluster. Al-
thought the insensitivity to latency should, in theory, also make Awari suitable
for multi cluster runs, the high bandwidth requirements could not be fulfilled
by the regular internet links. StarPlane, however, is capable of meeting the
requirements.
Recent work (12) showed that with the combination of DAS-3 and StarPlane it
was indeed possible to run Awari efficiently using three DAS-3 sites. Although
the high bandwidth provided by StarPlane was essential for this success, some
additional optimizations had to be applied to the application to reduce the
send overhead per message, to improve the performance of global synchroniza-

10

tion, and to reduce the effect of flow-control problems caused by the higher
latency of the wide-area links. Ultimately, running Awari on three DAS-3 sites
using StarPlane only caused a 15% performance drop compared to the single
cluster version.

The SCARIe project is a cooperation between the JIVE, the UvA and SARA
that focuses on providing a software correlator for Very Long Base Interfer-
ometry, VLBI. VLBI is a technique in astronomy in which several distant
radio telescopes observe the same object simultaneously. By using VLBI, as-
tronomers can make detailed images of cosmic radio sources with unsurpassed
resolution. To process the final picture all the data need to be at the same
location. In recent years networks have taken the place of couriers in delivering
the data from the telescope to the correlation centers. This approach is called
e-VLBI. An e-VLBI experiment may need to transmit data to a centralized
computation center from up to 16 radio-telescopes, each gathering data at
1 Gbps and located all around the earth. Currently processing is done by a
dedicated hardware performing a signal processing operation called correla-
tion. Hardware correlators are highly efficient while pure software correlators
have the advantage of greater flexibility, rapid prototyping and testing of new
VLBI operational modes. SCARIe is a very good example of an application
that needs high networking performance, an isolated environment for real-time
operation as well as scheduling for synchronization with radio telescopes. The
correlation task is following a hierarchical master-worker model. We have suc-
cessfully implemented it on top of MPI and the SATIN programming model
(13). In our experiments Starplane delivers 400MB/s of throughput between
the cluster sites and allows us to distribute medium correlation jobs to the
DAS-3 Grid. It is very important for the SCARIe project to have guaran-
teed quality of service on nodes and network performances. For this reason
we are working closely with the SCARIe team in charge of the on-demand
virtual-network (traffic isolation).

6 Future work and conclusions

The preliminary results we obtained from monitoring tools and user tests
using the Enhanced Socket API (see Sec. 4.4) show unexplained behaviors of
the throughput in the StarPlane network. Our first goal is to investigate the
origin of the oscillations visible in Fig. 3. We suspect this is due to unexpected
interactions between cluster nodes, the Myrinet switches and the OMEs.

In Sec. 4.2 we described our current work on the use of logical programming
(queries) for the interaction with the SPMP. To solve the logical queries it is
necessary to have a detailed knowledge base of the underlying infrastructure
and resource’s status. One possibility we will be investigating is the use of Se-

11

mantic Web-based models for such descriptions. Starting from our experience
with the RDF-based Network Description Language (NDL) (14) we will apply
this approach to StarPlane. Semantic reasoning offers a good level of flexibil-
ity and enough detail of information to make decisions over Grid services, and
specifically dynamic network services.

The StarPlane project researches novel ways to offer users higher control of the
network and its services. It achieves this by allowing applications running on
the DAS3 to control lightpaths in a portion of SURFnet6. The development of
the StarPlane Management Plane allows the integration of Grid middleware
on one side and the network components on the other. Currently switching
times are in the order of minutes: this makes StarPlane suitable only for long
applications. Integration of StarPlane with some Grid services running the
DAS-3, such as KOALA and JavaGAT, is underway. Two selected scientific
applications, AWARI and SCARIe, are experimenting with all the new Star-
Plane services. Future work will focus on reducing the switching time, as this
opens up StarPlane also to small, short-lived applications, and on the traffic
engineering techniques to provide isolated virtual environments. We investi-
gating the use of logics and Semantic-Web models for the description of the
network infrastructure and the interactions between applications and Grid
services.

Acknowledgments

We wish to thank SURFnet for their continuous support, in particular Roeland
Nuijts, Bram Peeters and Antoon Prins. We also thank Nico Kruithof and the
rest of the SCARIe project. The StarPlane research is supported by SURFnet,
the NWO grant 643.000.504 and the BSIK program GigaPort.

References

[1] C. de Laat, P. Grosso, Lambda grid developments, history - present -
future, in: P. Clarke, C. Davenhall, C. Greenwood, M. Strong (Eds.),
Lighting the Blue Touchpaper for UK e-Science: Closing Conference of
ESLEA Project, National e-Science Centre, 2007.

[2] P. Blackburn, J. Bos, K. Striegnitz, Learn Prolog Now!, Vol. 7 of Texts
in Computing, College Publications, 2006.

[3] J. Melton, A. Simon, SQL:1999: understanding relational language com-
ponents, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2001.

[4] W. Gentzsch, Sun grid engine: Towards creating a compute power grid,

12

in: CCGrid, 1st International Symposium on Cluster Computing and the
Grid, 2001.

[5] The globus toolkit, http://www.globus.org.
[6] H. Mohamed, D. Epema, The design and implementation of the koala

co-allocating grid scheduler, in: European Grid Conference, 2005.
[7] H. Mohamed, D. Epema, Experiences with the koala co-allocating sched-

uler in multiclusters, in: Proceeding of the 5th IEEE/ACM Int’l Symp.
on Cluster Computing and the GRID (CCGrid2005), 2005.

[8] J. Maassen, H. E. Bal, Solving the Connectivity Problems in Grid Com-
puting, in: Proceedings of The 16th IEEE International Symposium on
High-Performance Distributed Computing (HPDC), Monterey, CA, USA,
2007.

[9] R. V. van Nieuwpoort, T. Kielmann, H. E. Bal, User-friendly and reliable
grid computing based on imperfect middleware, in: Proceedings of the
ACM/IEEE Conference on Supercomputing (SC’07), 2007.

[10] J. W. Romein, H. E. Bal, Solving awari with parallel retrograde analysis,
IEEE Computer 36 (10) (2003) 26–33.

[11] J. Barnat, L. Brim, I. Cerna, P. Moravec, P. Rockai, P. Simecek, Divine
- a tool for distributed verification, in: Proceeding of 18th International
Conference on Computer Aided Verification (CAV 2006), 2006.

[12] K. Verstoep, J. Maassen, H. E. Bal, J. W. Romein, Experiences with
fine-grained distributed supercomputing on a 10g testbed, in: Accepted
for publication in the Proceeding of the 8th IEEE/ACM Int’l Symp. on
Cluster Computing and the GRID (CCGrid2008), 2008.

[13] R. V. van Nieuwpoort, J. Maassen, T. Kielmann, H. E. Bal, Satin: Simple
and efficient Java-based grid programming, Scalable Computing: Practice
and Experience 6 (3) (2005) 19–32.

[14] J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, C. de Laat, Using the
network description language in optical networks, in: Tenth IFIP/IEEE
Symposium on Integrated Network Management, 2007.

A Appendix: Resource querying

A.1 KOALA’s scheduler: Example of an bandwidth aware RSL query

In the following example, a job description is given of a 30 minute job con-
sisting of three seperate components. The first two components require 50
processors each, and must be run on the VU and UvA sites of the DAS-3 (as
indicated by the ”resourceManagerContact” option). The third component
requires 25 processors and may be placed anywhere on the DAS-3.

+(&(executable = "awari")

13

(label = "subjob 0")
(count = "50")
(resourceManagerContact = "fs0.das3.cs.vu.nl")
(bandwidth = "subjob 1:20G" "subjob 2:10G"))

(&(executable = "awari")
(label = "subjob 1")
(count = "50")
(resourceManagerContact = "fs2.das3.science.uva.nl")
(bandwidth = "subjob 0:20G" "subjob 2:10G"))

(&(executable = "awari")
(label = "subjob 2")
(count = "25")
(bandwidth = "subjob 0:10G" "subjob 1:10G"))

14

	Introduction
	The StarPlane network
	From the cluster node to SURFnet6
	CPL

	StarPlane Engineering Challenges
	StarPlane middlewares
	DRAC
	The StarPlane Management Plane: SPMP
	Grid execution service: KOALA
	Other Grid services

	Applications on StarPlane
	Future work and conclusions
	Appendix: Resource querying
	KOALA's scheduler: Example of an bandwidth aware RSL query

