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Addressing High-Speed Data Streaming in Scientific Research
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• Rapid Data Generation Rates

• Infrastructure Bottlenecks

• Need for Upgraded Upstream Processing:

• Gateway Node Functions

• Optimized System Architecture

• Scalability for Future Demands
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NUMA Considerations and Performance Management
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• NUMA Architecture Basics

• Memory Access in NUMA

• NIC Operation and NUMA
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The Role and Objectives of the Runtime System
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Overview of the Runtime System Framework
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Dataset and Compression-Decompression Algorithms

• Dataset Characteristics:
• Utilized a synthesized 16 GB dataset reflective of real tomographic data, processed 

in 11.0592 MB chunks.

• Compression-Decompression Algorithms:
• LZ4 algorithm selected for its speed and favorable compression ratio, achieving an 
    average 2:1 compression.
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Compression Behavior and Performance with NUMA

Goal: Maximize Resource Utilization and Minimize Network I/O
•Use available CPU cores for efficient data compression, effectively doubling the data transfer speed.

Strategy: Employ Data Compression to Enhance Throughput
•Implement LZ4 compression algorithm for real-time data compression with a 2:1 compression ratio.

Observation: Compression Throughput and CPU Core Count
•Increased thread count improves compression speed up to the number of available CPU cores; beyond that, 
performance plateaus due to context switching.
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Decompression Behavior and Performance with NUMA

Goal: Analyze Decompression Speed Influencers
• Determine the impact of the number of decompression threads and their NUMA domain alignment on performance.

Strategy: Optimize Thread Distribution Across NUMA Domains
• Decompression speed improves with additional threads, with best performance when evenly spread across 

NUMA domains.

Observation: Decompression Throughput Unaffected by NUMA Domain
•Decompression performance remains consistent regardless of the NUMA domain of data storage or execution.
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Sending and Receiving Threads Performance with NUMA
• Goal: Understand Thread Influence on Network Throughput

• Examine the effect of the number and location of sending and receiving threads on network throughput.

• Strategy: Symmetrical Thread Arrangement Across NUMA Domains
• Deploy an equal number of sending and receiving threads, creating a balanced TCP streaming environment.

• Observation: Receiving Thread Location Impacts Throughput
• Placing receiving threads in the same NUMA domain as the NIC significantly boosts throughput, especially for smaller 

thread counts.
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Network Performance and NUMA 
Goal of the Experiment : Investigate network transfer throughput and core affinity on data streaming 
between facilities with high-bandwidth connections.

Strategic Use of NUMA: Utilize NUMA-aware strategies to improve throughput by assigning tasks to 
cores that have local memory access to the NIC.

Observations from the Experiment:
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Single Stream Evaluation in Runtime System
• Goal: Assess Runtime System Efficiency with a Single Data Stream

• Evaluate system performance across various configurations for compression, decompression, and transmission-
reception threads.

• Strategy: Diverse Thread Configuration Experiments
• Use two interconnected machines capable of 100 Gbps transfers to test different combinations of thread counts and 

execution domains.

• Observation: Bottlenecks and Throughput Efficiency
• Throughput varies with the number of compression threads; end-to-end performance peaks with 
     receiver threads in NUMA domain 1, achieving 97 Gbps in optimal settings.
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Multi Stream Evaluation in Runtime System
• Goal: Compare Runtime System and OS-Determined Thread Placement
• Test the runtime system's effectiveness against an OS-controlled thread execution 

location strategy.
• Strategy: Multi-Source Data Stream Generation and Reception
• Generate four concurrent data streams across machines with varying architectures, 

assessing combined and individual network and end-to-end throughput.
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Multi Stream Evaluation in Runtime System

• Observation: Runtime System Superiority in Throughput
• The runtime system, leveraging detailed architectural knowledge, significantly 

outperforms the OS's autonomous thread placement, achieving 105.41 Gbps network 
and 212.95 Gbps end-to-end performance.
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Conclusion - Optimizing Data Streaming with NUMA-Aware 
Runtime System

• Comprehensive System Evaluation

• NUMA Optimization Proven Effective

• Multi-Stream Performance Superiority

• Single Stream Insights

• Empirical Evidence of Efficiency

• Future-Proofing Data Transmission
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Future directions

Questions: 

mdhasibu@buffalo.edu

Acknowledgments:  DE-AC02- 06CH11357 

The project's GitHub repository : https://github.com/H-jamil/ha4hpdt.git.

• Towards Dynamic Pinning:
• Current system utilizes static CPU pinning which, while effective, does not 

adapt to fluctuating workloads in multi-user environments.
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