
Throughput Optimization
With a NUMA-aware Runtime System for
Efficient Scientific Data Streaming

Hasibul Jamil, Joaquin Chung, Tekin Bicer, Tevfik Kosar, Rajkumar Kettimuthu

Addressing High-Speed Data Streaming in Scientific Research

Network Network

Scientific
 Instruments

Upstream Gateway Node HPC Cluster

• Rapid Data Generation Rates

• Infrastructure Bottlenecks

• Need for Upgraded Upstream Processing:

• Gateway Node Functions

• Optimized System Architecture

• Scalability for Future Demands

2

NUMA Considerations and Performance Management

QPI
Interconnect

QPI
Interconnect

L1/L2 L1/L2 L1/L2

Interconnect

PCIeNIC

LL cache MC

MemoryNetwork

L1/L2 L1/L2 L1/L2

Interconnect

LL cache MC

Memory

Socket 1
 Local

Socket 0
Remote

QPI

CPU cores CPU cores

= Data path for
 Application running
 in remote core

• NUMA Architecture Basics

• Memory Access in NUMA

• NIC Operation and NUMA

3

The Role and Objectives of the Runtime System

• Optimized Packet Processing

• Reducing Cross-Socket Traffic

Memory Queue
 (Thread-safe)

Compression
Threads{C}

Sending
Threads{S}

Network

Receiving
Threads{R}

Queue
 (Thread-safe) Memory

Decompression
Threads{D}

4

Overview of the Runtime System Framework

Upstream Gateway NodeScientific Instruments

Data Streaming

Runtime
Configuration
Generator

Sender side config Receiver side config

Data Streaming
Runtime • Runtime Configuration Generator

• Distributed Framework

5

Dataset and Compression-Decompression Algorithms

• Dataset Characteristics:
• Utilized a synthesized 16 GB dataset reflective of real tomographic data, processed

in 11.0592 MB chunks.

• Compression-Decompression Algorithms:
• LZ4 algorithm selected for its speed and favorable compression ratio, achieving an
 average 2:1 compression.

6

Compression Behavior and Performance with NUMA

Goal: Maximize Resource Utilization and Minimize Network I/O
•Use available CPU cores for efficient data compression, effectively doubling the data transfer speed.

Strategy: Employ Data Compression to Enhance Throughput
•Implement LZ4 compression algorithm for real-time data compression with a 2:1 compression ratio.

Observation: Compression Throughput and CPU Core Count
•Increased thread count improves compression speed up to the number of available CPU cores; beyond that,
performance plateaus due to context switching.

7

Decompression Behavior and Performance with NUMA

Goal: Analyze Decompression Speed Influencers
• Determine the impact of the number of decompression threads and their NUMA domain alignment on performance.

Strategy: Optimize Thread Distribution Across NUMA Domains
• Decompression speed improves with additional threads, with best performance when evenly spread across

NUMA domains.

Observation: Decompression Throughput Unaffected by NUMA Domain
•Decompression performance remains consistent regardless of the NUMA domain of data storage or execution.

8

Sending and Receiving Threads Performance with NUMA
• Goal: Understand Thread Influence on Network Throughput

• Examine the effect of the number and location of sending and receiving threads on network throughput.

• Strategy: Symmetrical Thread Arrangement Across NUMA Domains
• Deploy an equal number of sending and receiving threads, creating a balanced TCP streaming environment.

• Observation: Receiving Thread Location Impacts Throughput
• Placing receiving threads in the same NUMA domain as the NIC significantly boosts throughput, especially for smaller

thread counts.

9

Network Performance and NUMA
Goal of the Experiment : Investigate network transfer throughput and core affinity on data streaming
between facilities with high-bandwidth connections.

Strategic Use of NUMA: Utilize NUMA-aware strategies to improve throughput by assigning tasks to
cores that have local memory access to the NIC.

Observations from the Experiment:

10

Single Stream Evaluation in Runtime System
• Goal: Assess Runtime System Efficiency with a Single Data Stream

• Evaluate system performance across various configurations for compression, decompression, and transmission-
reception threads.

• Strategy: Diverse Thread Configuration Experiments
• Use two interconnected machines capable of 100 Gbps transfers to test different combinations of thread counts and

execution domains.

• Observation: Bottlenecks and Throughput Efficiency
• Throughput varies with the number of compression threads; end-to-end performance peaks with
 receiver threads in NUMA domain 1, achieving 97 Gbps in optimal settings.

11

Multi Stream Evaluation in Runtime System
• Goal: Compare Runtime System and OS-Determined Thread Placement
• Test the runtime system's effectiveness against an OS-controlled thread execution

location strategy.
• Strategy: Multi-Source Data Stream Generation and Reception
• Generate four concurrent data streams across machines with varying architectures,

assessing combined and individual network and end-to-end throughput.

12

Multi Stream Evaluation in Runtime System

• Observation: Runtime System Superiority in Throughput
• The runtime system, leveraging detailed architectural knowledge, significantly

outperforms the OS's autonomous thread placement, achieving 105.41 Gbps network
and 212.95 Gbps end-to-end performance.

13

Conclusion - Optimizing Data Streaming with NUMA-Aware
Runtime System

• Comprehensive System Evaluation

• NUMA Optimization Proven Effective

• Multi-Stream Performance Superiority

• Single Stream Insights

• Empirical Evidence of Efficiency

• Future-Proofing Data Transmission

14

Future directions

Questions:

mdhasibu@buffalo.edu

Acknowledgments: DE-AC02- 06CH11357

The project's GitHub repository : https://github.com/H-jamil/ha4hpdt.git.

• Towards Dynamic Pinning:
• Current system utilizes static CPU pinning which, while effective, does not

adapt to fluctuating workloads in multi-user environments.

15

https://github.com/H-jamil/ha4hpdt.git

Extra

16

