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SYNCHROTRON EXPERIMENTS 
§ Synchrotron light sources help scientific 

experiments of many fields
– Studying internal morphology of 

materials/samples with very high spatial and 
temporal resolutions

§ Real-time analysis of synchrotron experiments
– Change data acquisition for dynamic systems
– Adjust experimental parameters on the fly
– Detect errors early in experiments
– Enables smart and efficient experimentation

§ High performance network and compute resources 
are necessary
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TOMOGRAPHIC DATA ACQUISITION AND 
ITERATIVE RECONSTRUCTION
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Data AcquisitionIterative Tomographic Reconstruction

advanced object and data models and can provide better image
quality than does FBP on a limited number of projections.

Although many variations exist, the basic iterative recon-
struction method involves three major steps, as depicted in
Fig. 2. First, an initial guess of the volume object, which
might simply be an empty volume, is used to calculate the
simulated data through a forward model. Second, the simulated
data are compared with the measured data. Third, an update
of each model estimate is performed based on the employed
algorithm. Reconstruction of an object might require hundreds
of iterations, depending on the experiment and sample.

The earliest and most basic form of iterative reconstruction is
the algebraic reconstruction technique (ART), which involves
solving a sparse linear system of equations in the form of
Af = p where p is the projection data, A is the forward
projection operator, and f is the unknown 3D object to be
determined. While ART provides satisfactory images and has
a fast convergence rate, the iterations must be stopped before a
deteriorating “salt and pepper” or “checkerboard” effect begins
to degrade the object estimate. A variation of the ART method
is the simultaneous iterative reconstruction technique (SIRT)
in which the updates to the solution are computed by taking
into account all rotation angles simultaneously in one iteration,
as follows:

fk+1 = fk + �AT (p�Afk). (3)

As in the ART method, a relaxation parameter � can be
used to control convergence in certain cases. SIRT typically
produces better quality reconstructions than does ART and is
more robust to outliers in the measurement data. In our system,
we use more advanced iterative reconstruction algorithms.
However, the main computational steps remain the same.

C. Organization of Tomography Datasets
A tomography dataset that is generated at synchrotron light

sources typically consists of a set of 2D projections. These
projections are organized similar to input data in Fig. 2.
The parallelization of reconstruction at sinogram level is
trivial, since there is no dependency between neighboring
sinograms. However, once a sinogram is distributed among
several processes, those processes must synchronize at the end
of each iteration.

The reconstructed image dimensions are determined accord-
ing to the projection size; specifically, if projection dimensions
are (y,x), then the reconstructed image dimensions typically are
set to (y,x,x). For instance, if the dimensions of a tomography
dataset are (180, 2,048, 2,048), that is, 180 projections where
each of them has (2,048, 2,048) pixels, then the reconstructed
image’s dimensions are (2,048, 2,048, 2,048). Notice that the
size of the reconstructed image is independent of the number
of collected projections.

III. SYSTEM DESIGN

Our system consists of three main components: (1) data
acquisition and distribution, which manages data collection
from detectors and the distribution of those data to analysis

Fig. 3: Reconstructed image of a shale sample with only 30
streamed projections: (a) fixed angle, offset=1�; (b) interleaved,
offset=5�; (c) optimized interleaved. The range of angles is
[0,180)�.

processes; (2) the analysis system, which is responsible for
analysis and reconstruction of streaming data; and (3) the
controller, which analyzes reconstructed data. In the following
subsections, we explain each of these components in detail.

A. Data Acquisition and Distribution

Data acquisition at current tomography beamlines is typi-
cally performed with one of two methods: fixed angle rotation
or interleaved.

With fixed-angle rotation, acquisition starts at a specified
starting point and then increments by a specified angle offset
to a specified ending point. If, for example, the starting and
ending angles are 0� and 180�, respectively, and the offset is
1�, this strategy results in a sequence of 180 projections at (0,
1, 2, . . . , 178, 179)�.

In contrast, interleaved data acquisition collects data in
several rounds, each involving a full rotation with a wider
angle offset and with the starting angle selected to collect a
disjoint set of projections. For example, with an offset of 5�

and the starting angle advanced by 1� in each round, then after
five rounds we have 180 projections at (0, 5, 10. . . . , 175, 1,
6, . . . , 174, 179)�.

If, as in most beamlines today, processing occurs only
after data acquisition has completed, the choice of acquisition
scheme has little impact on most analysis tasks. For real-
time stream reconstruction, however, interleaved acquisition
is superior to fixed angle, since it significantly improves the
initial convergence rate of reconstruction.

In our system, we use an optimized version of interleaved
data acquisition, in which the offset starts from the widest angle
and is halved after each round. For the previous example, this
strategy results in a sequence of projections at (0, 90, 45, 135,
22, 67, . . . , 179)�. One potential problem with this approach is
that if too many projections are collected, it collects projections
with very small angles. This problem can be addressed by
specifying an offset threshold below which the data acquisition
strategy changes from optimized interleaved to interleaved.



HIGH-PERFORMANCE TOMOGRAPHIC IMAGE 
RECONSTRUCTION
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*M. Hidayetoglu, T. Bicer et al., Supercomputing 2019
*T. Bicer, D. Gursoy et al., Advanced Structural and Chemical Imaging 2017
Dataset: Dyer et al., Society for Neuroscience (eNeuro) 2017
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A REAL-TIME TOMOGRAPHIC RECONSTRUCTION 
WORKFLOW (DATA ACQUISITION)

* V. De Andrade et al., Nanoscale 3D imaging at the Advanced Photon Source, SPIE’16

Continuous vs. Interleaved DAQ



A REAL-TIME TOMOGRAPHIC RECONSTRUCTION 
WORKFLOW (DISTRIBUTOR)
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A REAL-TIME TOMOGRAPHIC RECONSTRUCTION 
WORKFLOW (TRACE-X)

* T. Bicer et al., Advanced Structural and Chemical Imaging, 2017
* T. Bicer et al., eScience, 2017 

• * TraceX: A High-Throughput Tomographic 
Reconstruction Engine for Large-Scale Datasets

• Sliding window with adjustable runtime params.
• Length (w), iteration (i), func. trigger freq (s).

• Reduction-based processing model
• Highly scalable and efficient

• Replicated reduction objects
• 32K cores on Mira, 64K cores on Theta



A REAL-TIME TOMOGRAPHIC RECONSTRUCTION 
WORKFLOW (TOMOGAN: DENOISER)

* Z. Liu, T. Bicer et al.,  Deep Learning on Supercomputer, SC’19
* Z. Liu, et al., JOSA A (Under review)



A REAL-TIME TOMOGRAPHIC RECONSTRUCTION 
WORKFLOW (VISUAL OUTPUTS)

Measurement Normalized
Measurement

Reconstructed
Image (3D vol.)

Denoized
Image (3D Vol.)



DEMO SETUP
16K Cores100GigE Conn.

* 100GigE network enables simulation of 10 beamlines each with 10GigE detector
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