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Abstract—It is universally accepted that the performance of
graph algorithms is heavily dependent on the algorithm, the
execution platform, and the structure of the input graph. This
variability remains difficult to predict and hinders the choice
of the right algorithm for a given problem.

In this work, we focus on a case study: breadth-first search
(BFS), a level-based graph traversal algorithm, running on
GPUs. We first demonstrate the severity of this variability
by presenting 32 variations of 5 implementation strategies
for GPU-enabled BFS, and showing how selecting one single
algorithm for the entire traversal can significantly limit per-
formance. To alleviate these performance losses, we propose to
mix-and-match, at runtime, different algorithms to compose
the best performing BFS traversal. Our approach is based on
two novel elements: a predictive model, based on a decision
tree, which is able to dynamically select the best performing
algorithm for each BFS level, and a quick context switch
between algorithms, which limits the overhead of the combined
BFS.

We demonstrate empirically that our dynamic switching BFS
outperforms our non-switching implementations by 2× and
existing state-of-the-art GPU BFS implementations by 3×. We
conclude that mix-and-match BFS is a competitive approach
for performing fast graph traversal, while being easily extended
to include more BFS implementations and easily adaptable to
other types of processors or specific types of graphs.

I. Introduction
Graph processing is an important part of data science,

due to the flexibility of graphs as models for highly
interrelated data. Given the rapid growth of dataset sizes,
as well as the expected complexity increase of graph
processing applications, a lot of research focuses on parallel
and distributed solutions for graph processing [1, 2, 3, 4].
Fuelled by the high-performance potential of graphics
processing units (GPUs), novel ways to circumvent graph
processing challenges [5] to accommodate the massive
parallelism of GPUs have also emerged [6, 7, 8, 9, 10].

The performance of graph processing is affected by both
the underlying hardware and the structure of the input
graph. While it is accepted as common knowledge that
the performance of data-dependent algorithms is impacted
by the structure of the data, little progress has been
made in understanding how large this impact actually is.
Similarly, the correlation between structural properties of
the input graph and the observed performance remains
poorly understood [11, 12, 13]. Comprehensive workload
characterization for graph processing on parallel systems

has been attempted [14], but not for GPUs. Finally, no
conclusive work exists on analytical modelling for parallel
graph processing, either.

In this work we take a data-driven approach to analysing
the impact structural graph properties have on graph pro-
cessing performance. To do so, we collect performance data
from a wide set of real world graphs from the KONECT
repository [15], and use them as training data for a binary
decision tree (BDT) model. For this problem, BDTs offer
a good balance between accuracy and prediction speed,
thus enabling runtime switching of algorithms for each
traversal level, ultimately enabling performance gain for
our mix-and-match BFS. While this approach provides
little explicit insight into the actual correlations between
graph properties and BFS performance, it does provide
a systematic process for building a prediction model, and
many tuning possibilities in terms of features, variables,
and actual methods.

We have applied this model on the 246 graphs from
KONECT; for each graph we performed traversals starting
from 11 different starting vertices, and collected the fea-
tures and performance indicators for each traversed level.
We train the model on a uniform random selection of 60%
of the data points. We use the model as a switch predictor
for a level-switching adaptive BFS. With this adaptive
BFS, we outperform two popular graph processing systems
for GPUs: we gain on average 4.5× over Gunrock [7] and
45× over LonestarGPU [16].

The main contributions of this paper are the following:
• We show that the performance of different BFS

implementations varies dramatically not only across
graphs, but also during the BFS traversal of one
graph, with differences of up to two orders of magni-
tude (Section III).

• We create a binary decision tree model that can
predict which implementation to use at every BFS
level. (Section IV-A).

• We demonstrate that our decision tree model is
accurate enough and fast enough to evaluate online,
allowing for dynamic runtime switching of implemen-
tations (Section IV-C).

• We demonstrate that we can use our prediction
model to perform dynamic switching, thus obtaining
a mix-and-match BFS able to perform, on average,
2× faster than the best single-implementation BFS
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(Section IV-C).

II. Background
For readers unfamiliar with BDTs or GPGPU process-

ing, this section provides basic information required to
understand the rest of this paper.

A. Graph Processing
Graphs are collections of entities (called nodes or

vertices) and relationships between them (called edges)
— G = (V,E). Graph processing typically implies some
transformation of the original graph by traversing its edges
and visiting its nodes.

The simplest example is a traversal itself, where, given
a starting node (i.e., the root node), the algorithm has to
visit all nodes accessible from the root, eventually saving
the shortest path between the root and each accessible
node. Typically, two types of traversals exist: Breadth-
First Search (BFS) and Depth-First Search (DFS). In this
work we focus on BFS, which is a level-based traversal: the
graph is discovered level-by-level, with all the neighbours
of the current frontier (the most recently discovered level)
forming the next level.

In general, graph processing applications, like BFS, are
difficult to parallelize due to their properties: low compute-
to-communication ratio, data-dependent behaviour, poor
data locality, variable parallelism, and load imbalance [5].
Thus, proposing efficient solutions for parallel graph pro-
cessing algorithms remains a challenge. In this work, we
focus on parallel graph processing using GPUs.

B. General Purpose GPU Programming
GPUs are massively parallel architectures providing

fine-grained data parallelism. Our work focuses on under-
standing the potential for GPUs to boost the performance
of graph processing algorithms, which are notoriously dif-
ficult to parallelize efficiently. In this work we use NVIDIA
GPUs, due to the superior programmability provided by
CUDA, the native NVIDIA GPU programming model. We
note however that the proposed method is independent of
the programming model and parallel platform1.

The idea behind the programming model is simple:
CUDA provides a mapping of the programming model
concepts onto the hardware, while preserving a sequential
programming model per thread.

For the actual computation, programmers focus on
implementing the single-threaded code, called a kernel;
they further write the host code to launch enough threads
to (1) cover the space of the problem, and (2) provide
enough potential for latency hiding [17].

The threads that execute the kernel are grouped into
thread blocks, which are scheduled on the streaming multi-
processors. All blocks form a grid, containing all the logical

1CUDA is the native programming model for NVIDIA GPUs; it
is proprietary to NVIDIA, but has a huge ecosystem of libraries and
helpful tools, unmatched by models like OpenCL or OpenACC.

threads that are to be scheduled and executed on the cores
themselves.

In terms of the execution model, NVIDIA GPUs work
with warps. A warp is a group of 32 threads that work
in lock-step: they all execute the same instruction on
multiple data. This model is called Single-Instruction,
Multiple Thread (SIMT) and enables high performance
by massive parallelism. However, it is unable to handle
diverging threads; as a result, load-imbalance between
threads within the same warp introduces severe perfor-
mance penalties. Aside from thread divergence, there are
also performance challenges related to the use of (global)
atomic operations and lack of coalescing for main memory
accesses.

Our software stack — the BFS kernels, required boiler-
plate code, and analysis tools — is based on C++ and
CUDA, and it is available at GitHub2.

C. Decision Trees

Decision trees are a non-parametric, supervised learning
technique [18]. They come in two flavours, classifiers and
regressors. We chose to use Binary Decision Trees to build
our predictive model, because they are easy to embed
into existing code, fast to evaluate, and can help inform
our analytical modelling. For building the model we use
the implementation in the Python library scikit-learn [19],
which uses an algorithm based on CART [18]. We then
generate a C++ implementation of the constructed BDT,
which is used to perform the predictions at runtime.

Due to the way trees are constructed, overfitting issues
can become more pronounced if the input parameters in
the learning set are not uniformly distributed across the
range we intend to predict against. Additionally, as the
number of input parameters increases, it becomes expo-
nentially more costly to compute the best discriminator,
which in turn makes the algorithm slower and increases the
risk of bias and overfitting. To avoid this problem we take
the standard precaution of separating our dataset into a
separate training and validation set, cross-validating our
model against the unseen data points in the validation
set. A detailed discussion on overfitting for our specific
models is presented in Section IV-D.

III. Experiments

This section presents the bulk of our experimental
results. We benchmarked our 32 different BFS implemen-
tations on the graphs from the KONECT [15] repository,
measuring both the total time and the time taken for each
level of BFS. We used these results to train and validate
our Binary Decision Tree (BDT) model. We further used
the model to dynamically switch between different variants
at runtime, thus creating our high-performance, mix-and-
match BFS.

2https://github.com/merijn/gpu-benchmarks

https://github.com/merijn/gpu-benchmarks
https://github.com/merijn/gpu-benchmarks
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A. BFS Implementations
We implemented 5 different neighbour-iteration prim-

itives, and created several variants for each of these
primitives. These 5 neighbour-iteration primitives consist
of: 2 edge-centric implementations (edge list and reverse
edge list), 2 vertex-centric implementations (vertex push
and vertex pull), and 1 virtual warp-based implementation
inspired by the work of Hong, et al. [20]. The different
implementations for each primitive differ in the way the
new frontier is computed at the end of each BFS level,
or the virtual warp configuration. In this subsection we
describe how these versions differ from each other.

Each algorithm starts by initialising all depths to
infinity, then initialising the root node’s depth to 0. During
every level of BFS we compute the frontier size, that is,
the number of vertices that have been assigned a new
depth.

1) Edge List & Reverse Edge List: For every level
of BFS these edge-centric implementations launch one
CUDA thread per edge. If the depth of the origin vertex
is equal to the current BFS level, then the depth of
the destination vertex is updated to the minimum of its
current depth and the BFS level plus one.

The edge list implementation uses the outgoing edges of
every vertex, whereas the reverse edge list implementation
use the incoming edges of every vertex. This difference
affects the amount of memory coalescing and the access
patterns exhibited at runtime.

The advantage of these edge-centric parallelisations is
that they never suffer from workload imbalance, every
thread in a warp performs the same amount of work. The
fact that many threads have to read the depth of the
same origin vertex helps with coalescing memory access.
The downside is that they result in many parallel updates,
resulting in many contested atomic updates.

2) Vertex Push & Vertex Pull: For every level of BFS,
our vertex-centric implementations launch one CUDA
thread per vertex. For the push implementation, if the
vertex’s depth is equal to the current BFS level, the thread
iterates over all its neighbours, updating their depth to
the minimum of their current depths and the BFS level
plus one. For the pull implementation, if the vertex has
no depth yet, the thread iterates over its neighbours until
it encounters one whose depth matches the current BFS
level; if this happens, the depth of the original node is set
to the current BFS level plus one.

Both implementations are susceptible to workload im-
balance, and thus performance loss, if vertices with wildly
different degrees are in the same warp. The push version,
similar to edge-centric ones, generates a lot of concurrent
updates, requiring a many atomic operations. However, if
the frontier is small, it avoids many useless reads, since
the depth of every vertex is only read once.

The pull version requires no atomics as the depth of a
vertex is only ever touched by one thread. But if none of
the neighbours of a vertex are in the frontier, a lot of time
is wasted iterating over neighbours for nothing. As such,
vertex-pull is, intuitively, more efficient for a large frontier,

as the likelihood of a neighbour being in the frontier scales
with frontier size.

3) Vertex Push Warp: Rather than assigning one thread
per vertex, this method uses the virtual warp approach
described in [20], which attempts to mitigate the negative
impact produced by workload imbalance between threads.

The basic principle is the same as with vertex push,
but we divide the warps into smaller “virtual warps”. Each
virtual warp gets a number of vertices equal to its number
of threads. However, instead of each thread processing
the edges for one vertex, all threads process the edges of
a single vertex in parallel. This repeats until all vertices
assigned to the virtual warped have been processed.

This reduces the amount of load imbalance occurring
within a virtual warp, since the workload of a virtual
warp is spread out equally across that virtual warp.
However, the optimal size of the virtual warp is challenging
to determine. Moreover, the different graphs and even
different levels of the graph also require tuning of the
warp sizes for best performance.

4) Variants: In every BFS level, zero or more new
vertices get discovered, forming the frontier for the next
level. We need to track the size of the frontier, since the
algorithm terminates when no new nodes are discovered.
We do this by enabling each thread to track how many new
vertices it has discovered, and aggregating these counts at
the end of each BFS level to compute the new frontier size.

We implemented four different aggregation methods.
The first variant uses a global counter and every thread
performs an atomic addition on this counter. The second
variant tries to alleviate the atomic operation penalty by
batching the atomics performed by a single thread. The
literature suggests that the number of atomic operations
and contention can be reduced further by performing a
reduction within a warp or block [21] before performing
the global atomic operation. Thus, the third and fourth
variants perform a warp and a warp-and-block reduction,
respectively, before atomically updating the frontier size.

B. Experimental Setup
All measurements were done on an NVIDIA TitanX,

using version 8.0 of the CUDA toolkit. The source code
of these benchmarks can be found on GitHub3.

As for datasets, we retrieved all the graphs from the
KONECT repository and ran each of the 32 implemen-
tations described above on all of them. Additionally, for
every graph, we used 11 different root vertices. All results
presented here are averaged over 30 runs, and exclude
input data and result transfer times. For readability rea-
sons, we only show 1 variant for each neighbour iteration
primitive, as otherwise the graphs become too cluttered
to read.

Figure 1 shows the runtimes, normalised to the slow-
est implementation for each graph, for a selection of
KONECT graphs.

3https://github.com/merijn/GPU-benchmarks

https://github.com/merijn/GPU-benchmarks
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Fig. 1: Total runtimes, normalised to the slowest time, for different BFS implementations for a selection of 11 KONECT
graphs. See Table I for input graphs details.

No. Graph # Vertices # Edges
1 actor-collaboration 382,219 30,076,166
2 ca-cit-HepPh 28,093 6,296,894
3 cfinder-google 15,763 171,206
4 dbpedia-starring 157,183 562,792
5 discogs_affiliation 2,025,594 10,604,552
6 opsahl-ucsocial 1,899 20,296
7 prosper-loans 89,269 3,330,225
8 web-NotreDame 325,729 1,497,134
9 wikipedia_link_en 12,150,976 378,142,420
10 wikipedia_link_fr 3,023,165 102,382,410
11 zhishi-hudong-internallink 1,984,484 14,869,484

TABLE I: Details for the input graphs shown in Figure 1
and Figure 3.

Figure 1 clearly illustrates the performance variability of
different implementations: performance can vary by orders
of magnitude across input graphs.This effectively means
that when (accidentally) choosing the worst algorithm,
one can loose 1–2 orders of magnitude in performance for
a BFS traversal compared with the best option. Thus,
an informed decision about the algorithm to be used for
a given graph very important for any efficiency metric.
However, this is no easy task: no models are available
to determine the best or the worst algorithm for a given
graph traversal task.

One of the reasons for which predicting the best algo-
rithm for the entire graph is difficult is the huge perfor-
mance difference that can be observed during traversing
a single graph: (1) between two different BFS levels in
the same graph, the performance of the same algorithm
can vary up to an order of magnitude, and (2) per-level,
the differences between different algorithms can be up to
four orders of magnitude. These large performance gaps,
are illustrated in fig. 2, which presents an example of
the performance of the five main BFS implementations,
per-level, for the actor-collaborations graph. We see that
the vertex push and pull are best for most levels, but
on a couple of levels they perform so badly that their

overall performance becomes below par. Such behaviour
is a strong indication that switching algorithms at every
level might be even better than devising a model to detect
the best overall solution.

IV. Modeling BFS Performance
In this section we describe the training processes used

by our automated, parallel toolchain to build our decision
tree model, we discuss its accuracy and applicability for
online performance prediction, and evaluate the feasibility
of a dynamically switching BFS.

A. Building the model
Before proceeding to build our model, we need to decide

on the features we will use and provide a suitable dataset
for training.

There is no consensus on which of a graph’s structural
properties impact the performance of graph algorithms.
Our previous modelling attempts in [12], combined with
our experience while optimising and developing our im-
plementations, lead us to believe that the graph size and
degree distribution are the biggest impact factors when it
comes to BFS traversal.

Additionally, work on adaptive BFS [3, 10] and the
observed runtime changes across levels, indicate that
behaviour at each level depends on the size of the frontier
discovered in the previous level, and the percentage of the
graph that has already been discovered.

Therefore, we consider the following relevant features
for our model:
Graph size: the number of vertices and edges in the graph.
Frontier size: either as absolute number of vertices or as

percentage of the graph’s vertices.
Discovered vertex count: either as absolute number of

vertices or as percentage of the graph’s vertices.
Degree distribution: represented by the 5 number sum-

mary and standard deviation of in, out, or absolute
degrees.
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Fig. 2: Runtimes of different BFS implementations per level of the actor-collaborations graph from KONECT.

Our experiments (see Section III) provided us with
performance data for all of our 32 implementations and
each BFS level of all KONECT graphs. These data allow
us to determine the fastest implementation for each BFS
level of each graph. From this data we built a dataset
where we associate every measured BFS level with the
structural properties of the graph it was run on, and the
level specific information. Of this dataset we used 60% as
a training set, keeping the remaining 40% as a validation
set.

The models described in the rest of this section consist
of binary decision trees trained to predict the best per-
forming algorithm for a given level of BFS, based on a
mix of the above properties.

B. Model Accuracy
We define the optimal BFS traversal of a graph as the

traversal where the fastest of our implementations is used
at every level. To evaluate the accuracy of our model,
we take this optimal runtime as a reference (i.e., as 1)
and evaluate the predicted and observed runtimes as a
slowdown compared to this reference. The larger the gap,
the further away we are from the optimal performance.

In table II we compare the model’s predictions and
the different implementations against the optimal runtime
across all KONECT graphs. The optimal runtime is the
execution time of the optimal BFS traversal. The “non-
switching best” runtime shows the numbers if an oracle
lets us pick the fastest non-switching algorithm for each
graph ahead of time.

The mix-and-match implementation, based on our
model’s predictions, leads to an average runtime of 2.04
of optimal — effectively, a 100% slowdown compared to
optimal. The average runtime for always picking the best
non-switching implementation is 2.44, or 144% slowdown
compared to optimal. In other words, our mix-and-match
BFS can obtain a 40% speed-up compared to the fastest
non-switching implementation. In practice, the potential
gain is even more significant, because no model or oracle

Algorithm 1–2× >5× >20× Average Worst
Mix-and-Match 92% 2.5% 0.4% 2.04× 498×
Non-switching Best 65% 8% 0% 2.44× 37×
Edge List 49% 22% 2.2% 4.16× 61×
Rev. Edge List 39% 33% 8.8% 7.04× 108×
Vertex Pull 16% 58% 30% 48.41× 2, 495×
Vertex Push 23% 53% 28% 55.61× 1, 980×
Vertex Push Warp 18% 25% 4.9% 5.42× 88×

TABLE II: Algorithm performance compared to theoret-
ical optimum over all the graphs in KONECT.

exists to selecting the fastest non-switching implementa-
tion.

C. Empirical Results
To verify whether the predictions described above are

actually achievable, we implemented “Mix-and-Match”,
an adaptive BFS implementation able to switch between
implementations on-the-fly, based on our model’s predic-
tions.

Most of our implementations operate on different rep-
resentations of the graph. Thus, switching between im-
plementations also involves switching between in-memory
representations. To do so, we need to either (a) gener-
ate/bring the new representation in memory on-the-fly,
or (b) keep all representations in memory.

We considered option (a) infeasible, as transferring data
to and from the GPU is generally slow, and doing so for
each level would become prohibitive, performance-wise.
Instead, we chose to consider this a classical time-space
trade-off, where we trade memory for faster computation
and keep each necessary representation of the graph in
memory.

The two main graph representations we use are a
Compressed Sparse Row (CSR) for the vertex-centric
implementations, and an edge list for the edge-centric
implementations. We can combine the two by simply
storing the origin vertex for every edge in our CSR. This
increases the storage from 1 int/vertex and 1 int/edge (for
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CSR) and 2 int/edge (for edge list), to 1 int/vertex and
2 int/edge. This is not very expensive, memory-wise: it is
a mere 38 MiB for a graph of 10,000,000 edges.

Our adaptive Mix-and-Match implementation achieved
runtimes that were within 5% of our prediction across the
entire dataset, resulting in numbers comparable to the
predictions listed in table II.

These results show that our model leads to considerable
speed-up compared to our individual implementations.
However, speed-up results are only as good as the baseline.
Thus, we further compare the mix-and-match results
against two existing GPU graph processing frameworks
to establish how much “real world” performance we gain
by using the model described in this paper.

Figure 3 compares our results against the state-of-the-
art GPU graph processing framework Gunrock [7] and the
slightly older BFS benchmark LonestarGPU [16], across
a selection of KONECT graphs. We benchmarked both
Gunrock and LonestarGPU on the same hardware, using
148 different KONECT graphs. On average, Gunrock
achieves a performance of 6.5× of our theoretical optimum.
LonestarGPU manages 63× of optimal. Our model’s 2×
of optimal means that we are, on average, 3× faster than
Gunrock.

D. Overfitting & Generality Concerns
As mentioned in section II, we took the standard

precaution of training our model against a subset of 60%
of our data and validating its accuracy against a separate
test set of 40% of the data points. In this validation, the
model accurately predicts the fastest algorithm in 70% of
the cases. Moreover, in the majority of the “mispredicted”
30%, the model is often predicting an implementation with
similar performance to the correct prediction.

From this data we can conclude that the model’s
accuracy is high with regards to our KONECT repository
of graphs. However, we expect the portability of the
model to be highly correlated with how representative the
training set is for the test set. For example, if we train the
model on social networks graphs only, we expect it to be
better at predicting the best BFS for social networks, and
less so for, say, road networks. Therefore, we recommend
that the actual training and modelling process is driven
by the prediction goals.

For example, if the goal is to build a generic model
to predict most graphs, using a large variety of graphs
for training is mandatory. A collection like KONECT is
a good start, but while validating the model against the
KONECT data set, we noticed that bad model predictions
are correlated with several classes of graphs, such as
bipartite graphs, and graphs with extremely skewed degree
distributions, which are less represented in the repository
(and, thus, in our training data).

On the other hand, if the goal is to have a model tweaked
for a specific type of graphs — e.g., social or road networks
— only a subset of the graphs in public repositories can
be useful for training. Whether there are sufficient such

graphs depends on many factors. However, this analysis
deserves a dedicated study, focused on determining what
is the ideal size and composition of a specialized training
set; such a study is beyond the scope of this work.

To summarize, we make no portability claims or guaran-
tees of the trained model for more specialized repositories,
and we recognize the limitations of our training dataset.
However, the training and prediction processes are sys-
tematic, straightforward, and generic, and can be easily
applied again for different training data/environments,
eventually improving/tuning the predictor to match the
goal.

V. Related Work

We summarize in this section related work on parallel
BFS implementations and on the use of machine learn-
ing models for performance prediction, which have both
inspired this work.

A. Algorithms
Despite the advances in large-scale graph traversal

algorithms, like direction switching BFS [3], distributed-
memory BFS [4], and the matrix-based graph processing
solution [22], there’s still no single best BFS traversal
solution. This happens because BFS is highly dependent
on the graph properties, with different algorithms and/or
implementations eventually suffering from different bot-
tlenecks. When combining this with complex, massive
parallel machines like the GPUs [23], the performance gaps
are even more difficult to predict.

In our work, we steer from devising a best BFS algo-
rithm. Instead, we focus on selecting the best performing
solution (from a given set) for each iteration. This is simi-
lar to [10], but our solution combines more algorithms and
uses a more deterministic, systematic switching criterion.
Moreover, our approach can be extended to incorporate
additional BFS versions, as long as sufficient performance
data are available for training.

B. Graph Processing Systems
The new challenges of graph processing have also re-

flected in the amount of systems and frameworks designed
for efficient, high performance graph processing [24, 25].
From these systems, a handful of GPU-enabled systems
have also emerged [7, 16], combining clever BFS algo-
rithms with specific GPU-based optimisations [20]. Still,
none of them can claim the absolute best performance
for the same reason: the diversity of graphs and their
properties lead to high performance variability for all these
systems [26].

Our work is complementary to the above graph pro-
cessing systems/frameworks: our switching approach can
be, in principle, incorporated in any of these frameworks.
Performance-wise, we are competitive against these sys-
tems (see Section IV-B).
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Fig. 3: Comparison of runtimes of different BFS implementations, predicted performance, and existing optimised BFS
implementations on KONECT graphs. Normalised to the slowest runtime for each graph. See Table I for the details
of the input graphs.

C. Machine Learning for Performance Modelling
Our mix-and-match BFS relies heavily on performance

prediction, which in turn is based on a model built
using machine learning. Performance prediction based
on machine learning models has been successful in the
past [27, 28, 29, 30, 31, 32], but applying machine learning
for an adaptive, level-switching BFS requires significant
changes. Specifically, an adaptive implementation requires
that features and predictions are fast enough to compute
to not lose any performance gain to this new overhead. To
the best of our knowledge, we are the first to have trained
and used such a model for improving BFS performance
by runtime switching.

VI. Conclusion
The increased availability of large graphs and the high

demand for their analysis have made GPUs a successful
platform for graph processing. However, the performance
GPUs can deliver for processing graphs is highly variable,
depending on the input graph and chosen algorithm. So
far, this variability has been difficult to quantify.

In this work, we propose to quantify and further use this
variability to gain performance for a BFS traversal. Our
approach works as follows: given a set of BFS algorithms
(32 in this work), and an input dataset, we predict and
employ, for each level in the BFS traversal, the best
algorithm in the available set. This is a generalization
of the work on direction-switching BFS [3] and adaptive
graph algorithms [10], to which we have added a much
more systematic switching detection.

Our switching strategy is based on a decision tree model,
which is trained to predict, at runtime, which BFS variant
is the best for the next iteration. This combination of
machine learning modelling and the large set of algorithms
we use makes our approach competitive with state-of-the-
art graph processing systems and algorithms.

Our results demonstrate our mix-and-match approach
delivers high performance, with an average gain of 3× over
Gunrock and 30× over LonestarGPU. Our mix-and-match
is within 1−−2× of the absolute theoretical optimum in
∼92% of cases, and outperforms the (fictive) oracle that
selects the best non-switching implementation ahead of
time by ∼40%.

We conclude that this work is a step forward in
quantifying and using the impact of graph properties on
the performance of graph processing. Our future work
will investigate the potential contribution of adding more
BFS algorithms, and test other modelling techniques that
offer a good balance between accuracy and speed of
runtime evaluation. Finally, on the long term, we plan
to expand this approach to other parallel platforms and
graph processing algorithms.
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