Automated security using SARNET

Ralph Koning

SNE Research Group

University of Amsterdam

Problem:

- Amount of attacks increase in guantity, size, and complexity.
- Security departments need to deal with these threats.
- Security departments want to deal with important or new threats.

Problem:

- Amount of attacks increase in quantity, size, and complexity.
- Security departments need to deal with these threats.
- Security departments want to deal with important or new threats.

UNIVERSITY OF AMSTERDAM

How do we create a network capable of automated response to attacks?

- How do we research such a network without harming others?
- How do we evaluate defenses?
- How do we measure defense performance?
- Can collaboration help in defending distributed attacks?

Detection phase: Detect, Classify, Analyze **Decision phase:** Risk, Decide **Respond phase:** Respond, Measure, Adjust Learn phase: Learn (used as input for decide)

Platform

ExoGENI, Openstack

Technologies

Alpine, mqtt, Quagga(BGP), Docker.

Container types

client, service, honeypot, reflector.

VM types

host, router, switch, nfv/cluster, **domain**.

Metrics, Observables

Secure Autonomous Response Network SARNET agent metrics

Network metrics

Bandwidth:

Application metrics

CPU:

Successful transactions:

Login attempts

Control loop

DETECT

ANALYZE

Known crackers: 10.100.4.100, 10.100.4.101, 10.100.4.102

Latest password attempts

* star * little * chevy

DECIDE

Deploy IDS to gather additional data Deploy honeypot to divert and capture attack

RESPOND

Deployed NFV chain: * honeypot:4.100:4.101:4.102

SARNET 2017

Choose your attack

Start a Distributed Denial of Service attack from all upstream ISP networks:

UDP DDoS

Start a specific attack originating from one of the upstream ISP networks:

Origin: UNSELECTED -- CLICK ON A CLOUD

Normal operation

Object information

nfv.services.as100

How do we pick the best response to an attack in the decide phase?

- Risk evaluation
- Response selection

Efficiency based response selection¹²

We can use metric *efficiency* to **learn** the best defense.

Figure 1: Efficiency requires the impact of an attack; impact is the blue area under the graph

$$\begin{split} \mathbf{E}(\text{isRecovered?, I, Ct}) \stackrel{\underline{\pi}}{=} \begin{cases} \beta + \alpha \frac{\mathbf{B}T}{\mathbf{B}T} + (1-\beta-\alpha) \frac{\mathbf{C}T-\mathbf{C}}{\mathbf{C}T} & \text{Recovered,} \\ \alpha(\frac{\beta}{1-\beta}) \frac{\mathbf{B}T-\mathbf{I}}{\mathbf{B}T} + (1-\beta-\alpha)(\frac{\beta}{1-\beta}) \frac{\mathbf{C}T-\mathbf{C}}{\mathbf{C}T} & \text{otherwise,} \end{cases} \end{split}$$

Figure 2: Equation for efficiency

Attack	First choice	Second Choice
cpu_attack	captcha	honeypot
pwd_bf_attack	honeypot/captcha	-
ddos_attack	udp-filter	-
ddos_attack(light)	udp-filter	udp-rateup

Table 1: Defence options per attack ranked by efficiency

¹koning2017netsoft. ²koning2018fgcs.

Multi-Domain SARNET

Secure Autonomous Response Network

UNIVERSITY OF AMSTERDAM

Invoking a multi domain defense can be done in multiple ways. How do these approaches perform in terms of efficiency?

We look at three of them:

- Approach 1: Block everywhere (starting at victim).
- Approach 2: Minimise amount of countermeasures. (or defend close to attacker).
- Approach 3: Minimise defense propagation.

The effect of budget on approach efficiency

- Approach 1 is not so efficient; it always consumes the complete budget.
- For single attacker far situations Approach 2 scores higher than 3.

As a general purpose approach we reccommend Approach 3. However, Approach 3 is not very alliance 'friendly' as it only removes traffic from the target.

Figure 3: approach performance for different budget sizes

Defences can be comprehensive, tasks are basic and take few parameters.

Each task can be fulfilled by any (capable) member in the alliance.

Metric	Observable	Classification	Defence	Task
bandwith	>80%	DDoS	Wait it out	start scrubbing
tcp/udp ratio	>0.9		Filter locally	redirect clean
transactions	<0.8		Filter remotely	redirect dirty
			remote scrubbing	

A computational Trust Model allows us to:

- Identify and isolate untrustworthy members
- Estimate the interaction risk
- Deciding whether and with whom to interact

Trustworiness' Factors³

- Competence: The potential ability of the member.
- Integrity: Whether the member fulfills commitments (assumed for now).
- Benevolence: Whether the member acts good and out of kindness.

³deljoo2018sctm.

Remote help selection based on social trust

Benevolence based algorithm.

Assume integrity of alliance members (for now)

Benevolence based algorithm.

Assume integrity of alliance members (for now)

Rank nodes on competence to perform task 't'

Benevolence based algorithm.

Assume integrity of alliance members (for now)

Rank nodes on competence to perform task 't'

Resolve ties using on benevolence

Benevolence based algorithm.

Assume integrity of alliance members (for now)

Rank nodes on competence to perform task 't'

Resolve ties using on benevolence

Ask node with highest ranking

Computational trust in practice

Main contributions:

- A framework for evaluating defenses in different topologies.
- A method to compare and evaluate countermeasure performance.
- Insights in how to defend collaboratively.

New questions:

- How to resolve conflicting requests?
- How do we optimize for the alliance globally (with limited data)?

For more information (slides, papers, demos): https://sarnet.uvalight.net