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1
I N T R O D U C T I O N

The Internet connects countless networks of computers, anywhere on
Earth. Computers come in the form of smartphones, tablets, servers
and as PC’s. The Internet also connects the computerized parts of
cars, machines, homes, and increasingly, the computerized parts of
ourselves. The situation fuels our imagination resulting in visions
of the Internet of Things (IoT). Figure 1 shows a popular presenta-
tion of the IoT. Nearly everything and everybody is interconnected
via the internet to computer programs running in data centers com-
monly referred to as “the cloud”. Presently, the abstract vision of the
Internet of Things is clearly established as well as its abstract bene-
fits and threats. Figure 1 shows an intuitive grouping in application
domains. Virtual internets, the subject of this thesis provides the un-
derlying structures that enables only the desired interactions. A vir-
tual internet is an emulated computer network, that contains internet
services, in the cloud. More precisely, a virtual internet is a construc-
tion of IP-tunnels overlaying the Internet and networking software,
e.g., routers, running on emulated computer hardware called virtual
machines (VMs).

The interaction of computers with things in our physical environ-
ment is not straightforward. The interaction has to avoid physical
damage, violation of laws and respect privacy. And it has to deal
with lots of data. At the moment there is a focus of scientists and
engineers to extract useful information from enormous amounts of
data. This research, indicated with the phrase ‘Big Data’, is flourish-
ing. The Big Data research doubts that we, humans, are capable of
finding the valuable information in the Big Data. Therefore much of
the Big Data research attempts to deliver artificial intelligence (AI) ca-
pabilities, e.g., to optimize the car traffic on a highway. This sounds
fascinating, yet for the IoT even basic ICT capabilities have to be de-
veloped. For instance, those to keep data secure at a certain place and
those to prohibit the copying of data whilst making it available to
software that has the right to process it.

IoT systems can be quite complicated. Take traffic control, where
self-driving cars are instructed by a software running in cloud dat-
acenters to take certain actions. There are many parties interacting
with this software: consumers, businesses, car manufacturers, telecom-
munication companies, governments, banks, Internet companies, etc.
Data must be shared with some companies and should not be shared
with others. There might be a law that prohibits that certain car-traffic
data leaves the country. Furthermore, the law may rule that only cer-
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1.1 Virtual internets 3

tified software is allowed to operate on the data. Some information
must be deleted, for privacy sake, after a few weeks. And in case
of an accident, data will be exchanged between cars, government in-
stitutions, insurance companies, etc. What about cyber attacks? Can
hackers stop a street full of cars? The complexity of the self-driving
car case hints that, ultimately, software of thousands of companies,
organizations and government are involved. An important question
is how to organize that, i.e., how to organize the Internet of Things?

1.1 virtual internets

This thesis discusses a set of key concepts that have been developed
to support the case of virtual internets being the main building blocks
to construct IoT applications. As stated before and detailed to great
extent later, a virtual internet contains computer emulated, hence
virtual, network equipment and computer hardware. Nevertheless,
these emulations are able to run regular network and computer soft-
ware. As part of R&D of software defined networks, our research
group at the University of Amsterdam noticed already in 2005[1] that
one could create virtual internets. Virtual

Figure 2: Interactive Networks
demonstration at the Su-
perComputing Conference
2010. This was one of the
first proof of concepts
that demonstrated the
usefulness of software
manipulations of virtual
internets and the ease of
implementing them.

internets would, just as its real
counterpart, be able to transport
information between computer
programs, e.g., webservers and
webbrowsers. In fact, most soft-
ware that uses internet will work
with a virtual internet too. There
is, however, a crucial difference
between the real and a virtual in-
ternet. A virtual internet can be
placed under full software con-
trol. We call such controlling pro-
grams Netapps.

Software, e.g., the video stream-
ing program active in Figure 2
interworks with a virtual inter-
net in the same way as with
the real Internet. Yet, the vir-
tual internets are emulated sub-
nets, and therefore software con-
structs. Hence, they can be ma-
nipulated by other software. In-
deed, the internet video streaming program, depicted in Figure 2 did
not notice the software manipulations active on the virtual internet
it was connected to. These manipulations can change however the re-
sults of the application. In Figure 2 the manipulations pinched the
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transmission capacity on some of the virtual internet links and mul-
ticasted the video stream. Furthermore, software manipulations on
virtual internets allow features not possible in the normal internet.
For example: the manipulations could even force the video packets
to loop several times on the same physical connections and guides
them to reach the video players. In the real internet, looping packets
are dropped. We distributed virtual internets globally by using data
centers that are spread around the world. Since virtual internets can
be software manipulated they are much more versatile than the real
one. At the Supercomputing [P-5, P-8] 2011 and 2012 fairs we showed
how Netapps dynamically repaired broken virtual internet links. Be-
cause most applications are able to deal with temporary internet hic-
cups the repair of the network did not require a reconfiguration of
the connected applications.

Figure 3: A virtual internet is drawn
as a sandbox, implying that
it secures the ICT processes
it contains by isolating them
from the real Internet. Fur-
thermore, a Netapp that ma-
nipulates the virtual inter-
net is drawn externally, in-
dicating a separation of con-
cerns. Scaling and distribu-
tion, a common concern, is
implemented by the Netapp
whilst the specifics of the ap-
plication is implemented by
domain experts. As a com-
mon concern, scaling and
distribution by Netapps is
one of the topics of this
study.

Our demonstrations illustrated
the potential of software control
of virtual internets to quite an
extent. From these we learned
[2] to discriminate generic and
specific functions to create vir-
tual internets. Software, named
‘Sarastro’, was described that im-
plements these generic functions.
Furthermore, the Netapps im-
plement the application specific
functions, to control, via Saras-
tro, the lifecycle, scaling and dis-
tribution of applications, VMs
and virtual internets. We also
reported in [2] about a world
spanning virtual internet being
a network with 163 routers in
a line topology. By simply run-
ning the Netapp again, a second
one could be generated. One
might say that Netapps create
SDI – software defined internet,
paralleling SDN – Software De-
fined Networks. The SDI con-
sists of emulated computer net-
works that interwork via the In-
ternet Protocol. Virtual internets
are represented in visualizations
by the graph shown in Figure 3.

A later insight yielded additional benefits of software control of
virtual internets. Inspired by the ability of Netapps to create self-
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repairing, globe spanning virtual internets, we applied for the fund-
ing of the SARNET project1, that now investigates the adaptive re-
sponse to cyber threats on a virtual internet. In the creation of the
SARNET proposal, we realized that we can control the exposure of
virtual internets to unwanted interactions. The basic mechanism for
this is to control the topology and location of the virtual internet with
the effect to keep its existence secret and prevent deliberate attacks.
Similarly, if an attack is detected one can move parts or the whole
virtual internet to other locations to obfuscate its whereabouts.

Virtual internets can be setup to facilitate the controlled interwork-
ing of distributed applications originating from multiple companies,
for example to facilitate a controlled way to share data. Furthermore,
virtual internets allow to setup connections per application to the
end-systems of users, e.g., isolated connections to online banking ap-
plications. Such sandboxed (see Figure 3) applications can be created
on a national or even on an international scale, by using a globally dis-
tributed set of datacenters. Hence, virtual internets and (sandboxed)
applications that use them can gain a relevant scale and distribution
for the IoT.

Such insights we did not have in 2009, the period in which the
initial subjects for this thesis research where formulated. In 2009, a
virtual internet prototype[3] existed that exposed an interface to ma-
nipulate IP-headers by means of a multi-touch table. This prototype
facilitated interactive routing in the virtual internet. The prototype in-
spired the thought that replacement of multi-touch software by appli-
cation software (that we presently call Netapps) would allow automa-
tized adaption of virtual internets. It was foreseen that such Netapps
would automatically scale, distribute and reconfigure virtual internet
topologies.

1.2 research questions

In 2011, at the beginning of this research, the benefits of deploying
virtual internets became clear. Yet all benefits of the software con-
trol of virtual internets become insignificant if the virtual internet
does not perform or costs too much. Cost, in financial and ecological
terms, is crucial as virtual internets can become very large. Hence, the
motivation of our research is to establish the foundations of security,
performance, distribution, cost, and scaling for virtual internets.

The aim of this thesis is to develop the computer science of the
constructions needed to make virtual internets a secure and practical
environment to assemble and operate a distributed application. In
essence we answer the following overall research question:

1 https://sarnet.uvalight.net/
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Can we scale, distribute and adapt virtual internets and em-
bed applications in them to achieve a better than best-effort per-
formance of the distributed application?

To answer this question, we have to address others. Applications in
virtual Internets experience a location transparency. Yet, in practice,
such transparency is not in all cases a desired property. A Netapp
instantiating a global scale virtual internet may not simply copy per-
sonal data of Dutch citizens to Tokyo. For persons, companies, busi-
nesses and the law it matters where data is, what that data is, which
software operates on it, who has instructed that operation, if there is
proof of execution, where the operation has taken place, where the
results are sent to and so on. Hence, the first research question is:

1. How can we entangle virtual and physical machines, and
how can we use this entanglement for secure communication
purposes?

This question is answered in Chapter 2 by extending the concept
of physical unclonable functions (PUFs). PUFs are random hash func-
tions, which are constructed from unique physical parts of the system.
The PUFs are unique for a computer and are usually embedded in a
CPU. Using the cPUF concepts described of Chapter 2 we can nail
down the exact CPU on which software should run, certify that this
is the intended software and can generate proof of their execution. In
case data is processed, the results can be securely transported via the
virtual internet links (VPNs), which are setup using unique device
information.

Another important property of virtual internets is performance.
The usability of virtual internets gets a plus if their global data trans-
port qualities are comparable or better than that of Internet itself. Ex-
amples of such qualities are latency/round trip times, capacity, jitter,
etc. As virtual internets are emulated computer networks and since
emulations add extra processing steps to data transport processes,
loss of performance is to be expected. On the other hand, perfor-
mance gain can be expected as Netapps allow to create optimized
global virtual internet topologies, e.g., by continuously adapting the
set of data centers that hosts the virtual internet, or by creating mul-
tiple transmission paths. Chapter 3 addresses the issue of topological
optimization of virtual internets, answering the following question:

2. Does the optimization of a virtual internet topology result
in a better end-to-end performance compared to the best effort
path over the Internet?

The software routers deployed in virtual internets run in VMs. VM
technology is quite mature and the modest (about 2-5%) performance
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penalties are for many applications outweighed by the benefits vir-
tualization brings. In case that future internet traffic runs predomi-
nantly via virtual routers in data centers, packet delay matters very
much. In high-end routers the lookup is performed by dedicated
hardware. Such hardware is not present on computers that run VMs.
In present day computers programs are stalled by accessing memory
outside CPU. This stalling effect is called the memory wall. The main
performance bottleneck of software routers is the lookup of the rout-
ing table items in memory. In virtual internets one wants to combine
advantages of VMs and the customization ability of software routers
with the packet-forwarding speed of dedicated hardware. In Chapter
4 the idea is researched to make routing-table lookup computational
bound, by transforming routing table data to CPU instructions. This
makes routing almost entirely a CPU activity. Hence, Chapter 4 ad-
dresses:

3. Can we improve the process of routing table lookup such
that it does not suffer from the memory wall?

For datacenters the availability of ‘green energy’ is an important
factor. Hence, also the ecological footprint of computation matters.
We regard this as another cost aspect of computing. As IoT appli-
cations can deploy large virtual internets, their ecological footprint
must be minimized constantly. In Chapter 5 it is investigated how
the total CO2 emitted by the virtual internet (networking elements
and executing applications) can be estimated and be used as input to
Netapps.

4. How can we quantify the CO2 footprint of a virtual inter-
net?

With the methods presented in Chapter 5 one can determine for
a given CO2 cost the scaling and distribution options of the virtual
internet. Scaling a distributed application is investigated in Chapter
6. That chapter reports about a case study where a Netapp optimizes
the performance of computing resources of a distributed application.
The Netapp keeps the distributed application free of bottlenecks, even
if the data that it processes features varying qualities. Chapter 6 ad-
dresses the following research question:

5. How to scale, for a fixed set of VMs, distributed applica-
tions to achieve an optimum performance?

Chapter 6 is relevant for developing generic scaling and distribu-
tion services for distributed applications, because this chapter ad-
dress common concerns: network performance, environmental im-
pact, and application performance.
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1.3 the iv-e project

The research presented in this dissertation has been carried out in
the subproject programmable infrastructures (PIF), of the COMMIT IV-
e project (e-Infrastructure Virtualization for e-Science Applications)2.
The aim of PIF is to give e-Science, i.e., the computationally inten-
sive science that is carried out in highly distributed network envi-
ronments, the capability to continuously adapt the service of the net-
work and computing resources for an optimal performance of spe-
cific virtual laboratory experiments. PIF provided the issues that were
tackled in this thesis. Most noticeably is the implementation of the
“Golden Demo” [P-3]. Its goal was to demonstrate integration of re-
sults of the COMMIT IV-e subprojects to scientific and non-scientific
attendances. The virtual internet technology developed for this thesis
enabled an easy going application integration. Scaling, distribution
and robustness, was then implemented via Netapps as discussed in
Chapter 6.

The remainder of this dissertation is structured as follows: In Chap-
ter 2, a new concept for PUFs and their usage is presented. In Chap-
ter 3 a router distribution framework, named Metro, is developed
and studied. A novel, CPU bound routing-table lookup algorithm is
investigated in 4. Chapter 5 introduces a CO2 cost model that can
be used in a decision framework to determine an optimal distribu-
tion of the virtual internet. Chapter 6 deals with automatic scaling
and distribution of application parts within virtual internets. Finally,
Chapter 7 revisits the research questions, summarizes the results and
concludes. Chapter 7 also presents advanced applications that this
thesis enables and defends the theorem that, in future, Internet will
be predominantly a distributed application in the clouds.

§

2 http://www.commit-nl.nl/projects/e-infrastructure-virtualization-for-e-science-applications



2
E S TA B L I S H I N G S E C U R I T Y O N U N I Q U E P H Y S I C A L
C H A R A C T E R I S T I C S O F C P U S

This chapter is based on “Flowchart description of security primitives for
controlled physical unclonable functions” [4].

Most people have their email server in a cloud with an online copy of
their emails. It matters if somebody moves it to another country. Although
it might have a better performance at its new location, it might be less pro-
tected to prying eyes. If the email server is part of a virtual internet, the
subject of this thesis, then a Netapp might decide, or not, to move it. To see if
an email server can be moved to another processor, a Netapp has to identify
the processor, and would use a table to determine if the processor is in the
right country. Clearly, the processors ID must be unique and non-hackable.
Besides the identification of computer systems, some IoT applications also re-
quire identification methods for sensors and actuators. This chapter describes
cryptographic methods, implemented as service primitives, with which Ne-
tapps can securely verify a processors identity. On basis of that, other service
primitives are presented to set up secure communication channels and to ob-
tain proof of execution of software that the processor runs.

To identify a modern integrated circuit, one uses physical unclonable func-
tions (PUF). PUFs are based on the intrinsic properties of a part of the cir-
cuit, e.g., a unique and complex mesh of resistive wires. On-chip circuits
measure the resistance values and report them to the processor. Packed se-
curely in the chip, it is practically impossible to measure the resistances
without destroying the chip. Furthermore, the chip has to include electronics
that allows software to interact with the PUFs.

We enhanced the PUF concept to make it a safe mechanism for distributed
computing environments that are susceptible to model attacks. Model attacks
deploy techniques to replicate the behaviour of a PUF by letting artificial
intelligence algorithms learn corresponding input (challenge) and output
(response) pairs. The paper presents the design of a control layer that protects
PUFs against model attacks and allows secure (Internet) communications to
interact with the PUF. The concept is called c(ontrolled)PUF. In addition,
we model five security primitives, which are: bootstrapping, secure channel
setup, renewal, proof-of-execution and certified execution.

In Chapter 7 we describe a distributed, secure digital market place for
transactions on data. In essence, digital market places are an execution envi-
ronment in which certified programs operate on and exchange data. One of
the most secure ways an execution environment can identify intended hard-
ware and provide proof that output is from the intended software, is to use
cPUFs. A way to do this is to deliver Netapps a listing of cPUFs and their
locations and other properties. On basis of such lists NetApps can setup the

9
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distributed system by instantiating certified software and their certified exe-
cution environment, acting also as a sandbox, on a computer with the right
cPUF. This then would allow other Netapps to verify that output stems from
certified software that is executed on a specific cPUF.

2.1 introduction

2.1.1 Physical unclonable functions

The concept of physical unclonable functions (PUFs), also known as
physical one-way functions or physical random functions, was intro-
duced in [5] . A PUF was originally defined as a physical object with
the following properties: (1) It can be challenged by applying a stim-
ulus to it, and the responses are highly unpredictable and unique to
each object. Applying a challenge and measuring the response can
be done efficiently. The number of challenge-response pairs is very
large. (2) The object is hard to clone physically, even by the original
manufacturer. (3) It is hard to model mathematically.

Some physical systems are referred to as PUFs even though they
do not satisfy all these properties. Controlled PUFs can be realized
from physical structures with less stringent properties.

A good example of PUFs are the Optical PUFs introduced in [5] .
These consist of a transparent material containing scattering particles
at random locations. When laser light is shone onto it, coherent mul-
tiple scattering occurs. An image made of the reflected or transmitted
light shows a so-called speckle pattern, a highly irregular pattern of
bright and dark spots. The pattern is highly sensitive both to the loca-
tions of the scattering particles and to the properties of the incoming
laser light, such as wavelength, angle of incidence and focal distance.
The angle of incidence, for instance, can be used as a ‘challenge’ to
the PUF. The resulting speckle pattern has a large entropy [6, 7] and
can be seen as the ‘response’ to the challenge.

2.1.2 Authentication using bare PUFs

Originally the use of PUFs was envisaged for authentication in the
following manner. An Optical PUF supports a very large number of
such challenge-response pairs (CRPs). Furthermore, knowledge of a
large set of CRPs gives only negligible information about the response
to a new challenge [8]. In [5] it was proposed to use PUFs as remote
authentication tokens. PUFs are randomly manufactured by the ver-
ifier, Alice. The following procedure is followed independently for
each PUF.

• In the enrolment phase, Alice generates a number of random
challenges. She measures the response for each challenge and
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stores the set of CRPs for that PUF in a database. The PUF is
then handed over to a user, Bob. Alice couples users to PUF
identifiers in her database.

• In the verification phase, Bob wishes to prove to Alice that he
possesses a specific PUF. He sends the PUF identifier to Alice.
Alice looks up the CRP list for this specific PUF in the database.
From the list she randomly selects a CRP. She sends the chal-
lenge part of the CRP to Bob. He applies the challenge to the
PUF and measures the response. He sends the response to Alice.
She compares Bob’s response to the response in her database. If
these match, then Alice is convinced of the PUF’s authenticity.
Whatever the outcome, the used CRP is removed from the list.

Alternatively, Bob does not send the response in the clear to Al-
ice. Instead, the response is used to derive a shared secret between
Alice and Bob, which they then use for an authentication protocol
1. Optionally, a session key is generated from the shared secret as
well. The security of the PUF as an authentication token as described
above completely depends on the unclonability of the PUF and the
unpredictability of its responses.

2.1.3 Dealing with measurement noise

Apart from Optical PUFs many other types of PUF technology have
been described in the literature, such as reflection of laser light from
paper fibers [9], randomized dielectrics in protective chip coatings
[10], radiofrequent responses from pieces of metal [11] or thin-film
resonators [12], delay times in chip components [13] and start-up val-
ues of SRAM cells [14]. In this chapter we will not be concerned with
the physical aspects of PUFs, but merely assume that PUFs are avail-
able as a resource with all the right properties.

Whatever the physical realization of the PUF concept, there is a
common problem that needs to be solved: noise in the response. The
measurements are analog and hence inevitably noisy. A measurement
result cannot be directly used in a cryptographic primitive such as a
one-way hash or a block cipher. A single bit flip in the input (due
to noise) would result in roughly 50% bit flips in the output. Hence,
an error-correction step is needed so that Alice and Bob can exactly
agree on the same bit string representation of a PUF response. (This
is known as information reconciliation). However, the error-correction
is nontrivial. The usual attacker model for PUFs assumes that the re-
dundancy data which is required for noise elimination is known to
the attacker. Hence it is necessary to make sure that the redundancy
data does not leak critical information about the common secret (the
“key”) derived from the response. The concept of a Fuzzy Extractor
[15, 16], also known as a helper data scheme [17], was introduced
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Figure 4: Fuzzy Extractor. The Gen function takes a measurement X as input,
and generates helper data w and a near-uniform key S. The Rep
function attempts to reproduce S from w and a noisy measurement
X
0. It succeeds (S 0 = S) if the noise is sufficiently weak.

as a primitive that achieves both information reconciliation and pri-
vacy amplification. The redundancy data (called helper data in such
schemes) suffices to reproducibly reconstruct a string from noisy mea-
surements (see Fig. 4), yet leaks only a negligible amount of informa-
tion about the extracted key. In this chapter we will not be concerned
with the exact details of fuzzy extractors. We will merely assume that
proper helper data is present.

2.1.4 Controlled PUFs

The concept of a Controlled PUF (cPUF) was introduced in [18]. A
cPUF is a combination of a PUF and a control layer in which the
PUF is inseparably embedded. The control layer completely shields
off the PUF inputs and outputs from the outside world. Any com-
munication with the PUF has to occur through the control layer elec-
tronics. Any attempt to force the components apart will damage the
PUF. A cPUF has considerably stronger security than a bare, unpro-
tected PUF, since attackers cannot probe and query the PUF at will.
In effect, the cPUF is a sort of trusted computing environment. The
term “Physically Obfuscated Key” (POK) was coined by Gassend for
this type of stored key. In contrast to the scenario sketched in Section
2.1.2, a POK key does not need to be discarded after use. A POK does
not need all the PUF properties listed in Section 2.1.1 Instead, it only
requires that the key obtained by the fuzzy extractor is shielded off
from attackers. For a cPUF it is furthermore required that there are
sufficiently many CRPs to accommodate all users, but by no means
the “very large” number mentioned in Property 1.

In Gassend et al. [18, 19, 20] a way was presented to employ this
trusted environment for the purpose of outsourcing computations.
The idea is roughly as follows. (More details are given in Section 2.3.)
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First, CRPs of the PUF are handed to users in a secure way. Every-
body (even people without CRPs) can remotely run programs on the
cPUF control layer. There is a special Application Programming In-
terface (API) for accessing the PUF. With the help of this API a user
can instruct the cPUF to generate a ‘proof’ of the correct execution
of the outsourced program. This proof can be thought of as a mes-
sage authentication code (MAC) over the executed program and the
program output, using the PUF response as the MAC key. If the user
has a valid CRP, he can verify the MAC. (See Section 2.3.2.3) This
procedure is referred to as ‘certified execution’. In the construction of
[18] the proof is verifiable only by the user who sends the task to the
cPUF. In [20] this was generalized to a proof (‘E-proof’) that can be
verified by third parties as well.

The above scheme provides a way for users to outsource compu-
tations and be certain that their program was correctly executed, by
the designated device, yielding the given result. No public key in-
frastructure is needed. Instead, the security is based on the secrecy
of the CRPs. In addition to the proof generation, [18, 19, 20] also
provide a number of protocols for CRP management, most notably
bootstrapping (creation of the original CRPs) and renewal (allowing
a user who possesses a CRP to obtain more CRPs). For an overview
of PUFs, cPUFs, and fuzzy extractors we refer to [19].

2.1.5 Contributions

In this chapter we propose a modification of the main cPUF security
primitives. We work with the same assumptions about the PUF as
in the original literature on cPUFs, and the same way of challenging
the physical structure. Our modifications of the primitives improve
the overall security by putting additional restrictions on access to the
cPUF and by encrypting more of the exchanged messages. We rep-
resent the protocols in a different way from [18, 19, 20], namely in
the form of flowcharts, which improves the comprehensibility of the
protocols and of their security properties.

In [18, 19, 20] the protocols between users and a cPUF were rep-
resented as programs executed by the cPUF’s control layer, using a
specific security API. Hashes of these programs play an important
role in the security primitives. In some cases, a function call involves
a hash of a piece of the program containing the function call. We
feel that such a formulation is needlessly complicated. Especially the
self-referential nature of the program hashes can be confusing. In our
flowchart notation, each security primitive corresponds to a ‘mode’
of the cPUF, in which the control layer has a certain fixed input/out-
put behaviour. A user can instruct a cPUF in which mode to oper-
ate, but cannot change the cPUF’s sequence of actions in that mode.
For each mode we present a flowchart. There are no hashes of con-
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trol layer programs; the security clearly derives from the secrecy of
he challenge-response pairs. Avoiding the program hashes allows for
more efficient implementation.

In contrast to Gassend et al., we do not allow just anybody to out-
source computations to the cPUF, but we first demand that a user
establishes a secure channel with the control layer, based on a shared
CRP. Any further communication has to take place through this chan-
nel. The advantage of this approach is twofold: (i) it provides more
data confidentiality, e.g., the outsourced job and the results are not
revealed to eavesdroppers, and (ii) it restricts the opportunities for
attacks.

Finally, we explicitly show how the helper data is handled; this
makes no essential difference with respect to the prior literature but
completes the data flow overview. The outline of this chapter is as
follows. We first explain the attacker model in Section 2.2 and sum-
marize the construction of Gassend et al. in Section 2.3. Then we
present our flowchart formulation in Section 2.4. We summarize our
results in Section 2.5.

2.2 attacker model

The manufacture and enrolment of cPUFs occurs in a secure environ-
ment. In particular, the bootstrapping (Sec. 2.3.2.1 and 2.4.2 is done
by a trusted third party (TTP); this procedure yields CRPs. After ob-
taining a number of CRPs, the TTP disables bootstrapping, i.e., it be-
comes impossible for any attacker to run the bootstrapping process
again, even if the attacker is in physical possession of the cPUF. We
do not specify how the disabling is done.

The TTP hands over CRPs to users in a secure way, i.e., there is
no eavesdropping. The cPUF is given to Bob (also in a secure way).
The assumption is made that programs running on the control layer
execute in a private and authentic way, i.e., their internal data is in-
accessible to an attacker, and nobody can cause the program to ex-
ecute incorrectly. Bob runs a remote computation service, offering
trusted computing (based on the cPUF) to users. Bob allows users
to communicate with his cPUF, but they have no physical access to
it. The communication channel is untrusted. Attackers can eavesdrop
and manipulate, delete and insert messages. Authentication between
a user and the cPUF is based on a shared secret, namely the response
to a challenge. Note that some PUF challenges will inevitably be sent
in plaintext over the insecure channel. The security is derived from
the unpredictability of the responses.

There are three kinds of attackers: (i) users who do not have a valid
CRP, (ii) users who have at least one valid CRP, e.g., obtained from
the TTP, and (iii) Bob. The following events constitute a successful
attack:
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• A user, or Bob, learns a response that belongs to another user.

• A user, or Bob, authenticates to the cPUF with a CRP that he
does not know.

• An attacker causes a legitimate user to accept a bogus outcome.

• Bob, or a user other than the user who sends the job, learns the
outcome of the computation.

2.3 api formulation of cpuf primitives

We first review the main cPUF primitives as described in [18, 19, 20].
In the original papers the security arguments for these primitives
were informal; a more thorough proof of security in the attacker
model of Section 2.2 was given in [21] using formal methods.

We do not discuss all the protocols, but restrict ourselves to Certi-
fied Execution, E-proofs and basic CRP handling (bootstrapping and
renewal). We try to cover all the essentials. For missing details we
refer to the original literature. We have kept the notation as close as
possible to the original. Programs are written in C-like syntax. Vari-
ables are declared with ‘my’ as in Perl.

2.3.1 Hashblocks

The control layer maintains a stack containing program hash values.
The most recent value pushed onto the stack is also referred to as
PHashReg. The API has a command hashblock which manipulates
the stack as follows.

hashblock(arg1)( {
... lines of code ...

},arg2) ⇧
The above code leads to the execution of ‘lines of code’ and com-

putation of a hash over the concatenation of arg1 with all the lines
of code within the {} brackets and arg2. When execution reaches
the hashblock command, the cPUF computes this hash and pushes
it onto the stack. When execution reaches the final ) brace, the top
value of the stack is popped off and purged. Variables declared within
a hash block are automatically cleared on exit from the hash block.
Note that the code within the hash block has access to PHashReg, i.e.,
a hash over itself. The self-referential nature of this construction was
one of our motivations to look for a simplification. The purpose of
the hashing and of the rather peculiar structure, with arg1 and arg2

sandwiching the program code, is explained in Sec. 2.3.3.
The control layer accesses the PUF through the function ‘PUF’ .

• PUF(Chal) yields the PUF response to challenge Chal.
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We list the API commands that deal with PUF access and the PUF
responses. These commands are available to users.

• GetResponse. This instruction feeds PHashReg to the PUF as a
challenge. GetResponse() = PUF(PHashReg).

• GetSecret. Essentially, this instruction generates a hash of a
PUF response. GetSecret(Chal) = Hash(PHashReg, PUF(Chal)).

2.3.2 API notation for CRP handling, certified execution and E-proofs

2.3.2.1 Bootstrapping

The CRP management of a cPUF is bootstrapped in a trusted environ-
ment. A trusted third party (TTP), e.g., the manufacturer or a cPUF
issuer, obtains the first CRPs from the cPUF by running the following
program,

Bootstrap(Prechal): hashblock(PreChal)( {
Return GetResponse();

}); ⇧
Here ‘PreChal’ stands for ‘pre-challenge’. The above code computes

the hash of PreChal concatenated with the instruction between { }

brackets (the hash that gets stored in PHashReg), then feeds that to the
PUF and directly returns the PUF output. The TTP has to compute the
actual PUF challenge PHashReg, and stores it along with the cPUF’s
output as a CRP.

As bootstrapping gives CRPs to someone who does not yet have a
CRP, this function should be disallowed after the TTP has obtained
its CRPs.

2.3.2.2 Renewal

Users who already have a CRP(OldChal, OldKey) can obtain more
CRPs by running the ‘renewal’ protocol on the cPUF, as follows.

Renew(OldChal,PreChal): hashblock(OldChal,PreChal)( {
my newR = GetResponse();
my OldKey = GetSecret(OldChal);
return EncryptAndMAC(newR,OldKey);

}); ⇧
As in the bootstrapping primitive, PreChal is a pre-challenge. It is

chosen randomly by the user. The cPUF creates an encrypted channel
back to the user through which it sends the new response. The actual
new PUF challenge is a program hash that depends on both PreChal

and OldChal. The user computes this hash; together with newR it
forms the new CRP.
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2.3.2.3 Certified execution

The method of creating an encrypted channel back to the user is used
also for Certified Execution. A user possesses a CRP (Chal,Resp). Run-
ning the Certified Execution protocol for a job Prog with this CRP is
done as follows,

CertifiedExecution(Chal,Prog): hashblock (Prog)( {
my result;
hashblock ()({ result = RunProg(Prog); });
my key = GetSecret(Chal);
my cert = (result, MAC(result,key));
Return cert;

}); ⇧
Here Runprog(Prog) stands for execution of Prog on the control

layer. The user has all the ingredients to compute key himself, so he
can verify the MAC: key = Hash(PHashReg,Resp). The register value
PHashReg is known to the user, since he knows Prog, and the above
listed code is publicly known.

2.3.2.4 E-Proof generation

Next we list the steps for E-proof generation and verification as given
in [] .

EproofGen(Prog):
my HProg = Hash(Prog); hashblock (HProg)(HCodeA, {

my result;
hashblock () ({ result = RunProg(Prog); });
my secret = GetResponse();
my Eproof = (result, MAC(result,secret));
return Eproof;

}); ⇧
The parameter HCodeA stands for the hash over the arbitration

program (see Section 2.3.2.5). The PUF challenge for deriving the
MAC key is completely determined by Prog. Nobody but the cPUF
has access to this MAC key.

2.3.2.5 E-proof verification (‘arbitration’)

A verifier who has Eproof, Prog and a valid CRP can check the cor-
rectness of Eproof. He first computes HProg = Hash(Prog), and then
runs the following arbitration program on the cPUF through Certified
Execution.
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EProofVer(HProg,Eproof): hashblock(HProg)( {
my (result, M) = Eproof;
my secret = GetResponse();
if M = MAC(result,secret)

return(true);
else

return(false);
},HCodeE); ⇧

Here HCodeE stands for the hash over the E-proof generation pro-
gram (see Section 2.3.2.4).

2.3.3 Security purpose of the hash blocks

We briefly review the purpose of all the hashblock instructions, as
explained in [18, 19, 20].In the Bootstrap procedure it is not strictly
necessary to have a hashblock, since the TTP sees all secrets, but for
simplicity the structure of the program is the same as in Renewal.

In Renew, the hashing of the challenge is of crucial importance. If
Renew were to have a direct challenge Chal as its argument, then an
attacker could exploit this: The attacker knows a CRP (Chal1, Resp1).
He overhears another user’s challenge Chal2, e.g., when that user is
doing Certified Execution. The attacker would be able to run Renew
with Chal2 as the new challenge (and Chal1 as the old) to obtain the
response Resp2. This attack is prevented by the use of a Pre-challenge
which has to be hashed in order to turn it into a challenge. Knowledge
of Chal2 does not help the attacker to find PreChal; he has to compute
a hash pre-image. The legitimate user, on the other hand, does know
PreChal. Hence, the main purpose of the hashblock is to turn the
pre-challenge into a challenge.

In CertifiedExecution and EProofGen, the function of the outer
hashblock is to make sure that Prog is not tampered with. The key

in CertifiedExecution and the secret in EProofGen are made to de-
pend on Prog. The inner hashblock ensures that Prog does not have
access to secrets such as the MAC key. The extra hashblock instruc-
tion pushes a new value into PHashReg, which prevents Prog from
accessing the previous PHashReg value.

The purpose of the rather peculiar three-part hash construction,
with arg1 and arg2 sandwiching the program code, allows iEProofGen
and EProofVer to have access to the same secret. This is achieved by
letting these two primitives each contain a hash of the program code
of the other primitive (HCodeE and HCodeA); in this way they are ‘cou-
pled’ together, and no other program can get access to their shared
secret.

Furthermore, it is our understanding that in each of the listed pro-
grams, the hash blocks are also meant to ensure that the PUF primi-
tives are always run using the exact same lines of code. Users can run
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arbitrary code on the control layer, including the PUF commands PUF,
GetResponse, and GetSecret, but any malicious modification to the
programs in Sections 2.3.2.2-2.3.2.5 leads to modified key values.

2.3.4 Remarks about the API formulation

We feel that the API construction is somewhat unsatisfactory from
the point of view of implementation efficiency. Furthermore, the se-
curity of the protocols is not always transparent. (Note though that
no security holes have ever been found).

1. In the work of [18, 20, 22] users are allowed to run any code
on the control layer, including PUF commands. This is an open
invitation for exploits. One of the purposes of the hash blocks
is to thwart code modification attacks. We would like to depart
from the philosophy that users should be allowed to execute
PUF commands at will. Since the number of security primi-
tives involving the PUF is very limited anyway, we suggest to
‘freeze’ the code that uses them, and allow user access only in
the form of calls to Renew, CertifiedExecution, EProofGen and
EProofVer, which now consist of fixed code in the control layer
ROM.

If this approach is taken, hashing of the control layer code be-
comes unnecessary. Note that the outsourced jobs ‘Prog’ and
the pre-challenges must of course still be hashed, but this can
be done without hash blocks. Hence, one can get rid of the hash
blocks. One advantage of this approach is efficiency: the cPUF
no longer has to compute hashes of incoming programs.

2. When a function call to GetResponse or GetSecret is placed
inside a hash block, this leads to the highly selfreferential situ-
ation that an instruction operates on a hash over itself. While
there is nothing wrong with this per se, it is confusing. The self-
reference serves no security purpose other than fixing the code,
as mentioned in Section 2.3.3. The confusion is avoided in the
approach that we suggest above.

3. The Renewal protocol can be run even by users who do not
possess a valid CRP. While this does not immediately pose a se-
curity risk (the attacker does not have OldKey, so the encrypted
newR is inaccessible to him), it allows CRP-less attackers to run
a sort of denial of service (DoS) attack: they may overwhelm
the cPUF with requests for Renewal, even though they are not
entitled to Renewal.

4. In the Renewal protocol, the PreChal is sent in the clear, and
any eavesdropper can compute the actual challenge to the PUF.
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While this is not a security risk, the leakage of the new chal-
lenge could easily have been avoided by a slight change to the
Renewal protocol: the pre-challenge could be sent to the cPUF
over a secure channel, based on the shared secret OldKey.

5. E-proof generation and verification is ‘asymmetric’ in the sense
that anybody can initiate E-proof generation, but a valid CRP
is needed for E-proof verification. Again this opens up the pos-
sibility of a DoS attack by CRP-less attackers. They can over-
whelm the cPUF with jobs to be run in EProofGen.

6. In Certified Execution and E-proof generation, the Prog and re-
sult are communicated in plaintext. While this does not nec-
essarily have to be considered as a security risk, it would have
been easy to build in some extra confidentiality: Again, it would
have sufficed to set up a bidirectional secure channel based on
a shared secret (the PUF response).

2.4 protocol modifications and flowchart representa-
tion

2.4.1 Our improvements

In this section we introduce a more transparent representation for
specifying user interaction with a Controlled PUF. The approach is
based on Remark 1 in Section 2.3.4. We disallow arbitrary execution
of PUF commands. Since the lines of code in the Bootstrapping, Re-
newal, Certified Execution and E-proof programs are then fixed any-
way, we may as well replace these programs by fixed circuits.

In this way we remove the self-referential nature of the GetResponse
and GetSecret function calls, while at the same time improving effi-
ciency by reducing the amount of hashing.

Each circuit (flowchart) corresponds to a ‘mode’ of the cPUF. A user
can instruct a cPUF in which mode to operate, but cannot change the
cPUF’s sequence of actions in that mode.

We furthermore completely ‘symmetrize’ all the interactions be-
tween the cPUF and a user. We introduce a basic protocol underlying
all the others: the setup of a (bidirectional) secure channel (SC) based
on the shared knowledge of a CRP. We demand that any cPUF proto-
col has to run through a SC, i.e. a user needs a valid CRP in order to
achieve any further communication with the cPUF whatsoever. This
reduces the potency of DoS attacks and provides more confidential-
ity of challenges, outsourced jobs and results than the construction of
Gassend et al. Hence our protocols do not have any of the drawbacks
listed in Sec. 2.3.4.

Our construction immediately leads to a substantial simplification:
Execution of any user program by the control layer is automatically
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Figure 5: Bootstrapping mode. The control layer receives a pre-challenge P.
The pre-challenge is hashed, yielding a challenge C, which is fed to
the PUF. The PUF output is sent to the Gen function, which gener-
ates a secret key k and helper data w. The key k is hashed, yielding
the response R. Finally, the control layer outputs the helper data w

and the response R

Certified Execution. Therefore we do not need a separate flowchart
for Certified Execution. As a final technicality, we explicitly include
the handling of the PUF helper data in our flowcharts. While this
does not add anything essential to the protocols, it completes the
visualization of all the data flows and clearly indicates which PUF
processing (Gen/Rep) occurs where.

In Sections 2.4.2-2.4.5 we present our flowcharts for Bootstrapping,
SC setup, CRP Renewal and E-proof generation and verification. The
shaded area in each flowchart represents actions that occur within
the control layer. A block arrow indicates data sent through a secure
channel.

2.4.2 Flowchart for bootstrapping (Fig. 5)

The CRP management of a cPUF is bootstrapped in a trusted envi-
ronment. A trusted party, e.g., the manufacturer or a cPUF issuer,
obtains the first CRPs from the cPUF in bootstrapping mode1 . These
CRPs42

{C,w,R} are distributed to authorized users. Bootstrapping is
the only time at which the control layer ever reveals a PUF response
in the clear to the outside world. After the trusted party has obtained
a number of CRPs he permanently disables the bootstrapping mode.

1 The ‘hash1’ function is included here for cosmetic reasons only, in order to have
exactly the same flowchart as for our Renewal protocol. Its role will become apparent
in Section 2.4.4. Note that hash1 and hash2 are different hash functions. The output
of hash1 is a PUF challenge, while the output of hash2 is a key. The role of ‘hash2’ is
to ensure that there is a secret known only to the control layer. This is important for
the E-proofs (see Sections 2.4.4 and 2.4.5) .

2 The PUF challenge C and the helper data w together are considered as a challenge
to the cPUF.
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Figure 6: Secure Channel setup mode. The control layer receives C and w.
It feeds C to the PUF. The PUF output and w are sent to the Rep
function, which reproduces the key k. This gets hashed, yielding
the shared secret R, which is then used by the ‘SC handler’ module
to handle the secure communication channel with the user.

2.4.3 Flowchart for secure channel setup (Fig. 6)

user who possesses a CRP for a specific cPUF can setup a secure
channel with that cPUF over an insecure communication line. See
Fig. 6. The security is based on the fact that the response R is secret,
even though C and w are revealed to attackers. The shared secret R
allows the user and the cPUF to encrypt their communication, gen-
erate MACs etc. In Fig. 6 we have deliberately abstracted away the
details of the SC setup by putting everything in a box called ‘SC han-
dling’. Many ways are known to establish a SC and then to properly
communicate through it (with protection against replay attacks etc.),
so we do not have to be specific here.

2.4.3.1 Flowchart for CRP renewal (Fig. 7)

Any user who already possesses a valid CRP for a certain cPUF
can obtain additional CRPs for that cPUF using Renewal mode. Our
flowchart for Renewal (Fig. 7) is very simple: it amounts to Bootstrap-
ping executed through a Secure Channel. The user first establishes a
SC with the cPUF. Then he initiates renewal mode. He sends a ran-
dom pre-challenge Pnew and receives Rnew, wnew. Finally he com-
putes Cnew =hash1(Pnew) and stores {Cnew,wnew,Rnew}.

Remark Similar to the Gassend et al. construction, man-in-the-middle
attacks are prevented by the fact that the hash1 function is present at
Renewal, but not at SC setup. This prevents an attacker from abusing
Renewal to obtain the response R for eavesdropped challenges (C,w).
He would have to invert hash1 to obtain the proper pre-challenge P =
hash1inv(C).
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Figure 7: Renewal mode. The steps in the cPUF are identical to Boot- strap-
ping, but communication between the user and the cPUF goes
through a secure channel

2.4.4 Flowchart for E-Proof generation (Fig. 8)

We present our variant of E-proofs (verifiable by third parties). The
protocol is run through a SC based on a CRP {C,w,R}. A user Al-
ice outsources the execution of a program prog to the cPUF. She re-
ceives the result of the computation and the proof Eproof. She stores
{C,w,prog,res,Eproof} for later use. The MakeProof module in Fig.
8 can be, e.g., a MAC using k as the key, or a keyed hash. The security
is based on the fact that the ‘internal’ secret key k is known only to
the cPUF. Hence nobody is able to forge the certificate, not even Alice,
who has R = hash2(k), or even the trusted enrolment authority.

Remark. The only program hash occurring in the E-proof generation
is the hash over the to-be-executed job. There are no hashes over API
instructions as in Gassend et al.

2.4.5 Flowchart for E-proof verification (Fig. 9)

When user Alice wants to convince a third party, Victor, that prog
executed on the cPUF gave the result res, she hands over to Victor
the data {C,w, prog, res, Eproof}. Victor establishes a SC with the
cPUF using one of his own CRPs. Through this SC he runs the E-
proof verification protocol. The protocol amounts to nothing more
than checking the consistency between the E-proof, the ‘certified’ data
{C,w,hash3(prog), res} and the key k. If the E-proof is a MAC as
in the example above, then the consistency check is a simple MAC
verification.
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Figure 8: E-proof generation mode. The protocol is run through a SC. The
SC-key in use is the hash of the secret key k; this k never leaves
the cPUF. The user sends a program, which is executed and also
hashed by the cPUF. The key k is used by the MakeProof function
to certify the program hash, the result of the computation, and the
SC setup parameters C,w
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Figure 9: E-proof verification mode. The protocol is run through a SC. The
cPUF recovers the secret key k from (C,w) by using the PUF and
the Rep function. The VerifyProof module then verifies the con-
sistency between Eproof, the key k and the data C,w,h, res
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2.5 conclusion

We have given a modified version of the basic cPUF protocols for CRP
management, certified execution and proof of execution. Our modifi-
cations further restrict access to the cPUF, and provide more confiden-
tiality. We have introduced flowchart notation to replace the API pro-
gram formulation of Gassend et al. This gets rid of the selfreferential
program hashes and clarifies the essential steps of the protocols. The
security clearly derives from the secrecy of the challenge-response
pairs. Furthermore, elimination of the program hashes reduces the
amount of work done by the control layer.

In our flowchart notation, each security primitive corresponds to
a ‘mode’ of the cPUF, in which the control layer has a certain fixed
input/output behaviour. A user can instruct a cPUF in which mode
to operate, but cannot change the cPUF’s sequence of actions in that
mode. Finally, we have explicitly shown how the helper data is han-
dled, completing the data flow overview.

§





3
F I N D I N G T H E L O W E S T L AT E N C Y G L O B A L
E N D - T O - E N D R O U T E V I A T H E C L O U D

This Chapter is based on "Metro: Low latency network paths with routers-
on-demand"[23].

This Chapter shows how Netapps can optimize the packet transport QoS
between endpoints linked by virtual internets. It does so by forcing packets
to travel via certain data centers that host the networking elements, e.g.,
routers, of the virtual internets. In our study, the endpoints and data centers
are globally distributed. In more than half of the cases the optimizations
resulted in better QoS of the virtual internet connections compared to the
default internet path between the endpoints. As the optimization goals are
applicable for most networking applications, it makes sense to implement
the path-optimization algorithm as a generic service that a Netapp uses to
optimize a virtual internet. This would simplify the design and development
of the distributed application that uses the virtual internet. Beyond that,
the work presented in this Chapter states that virtual internets extend the
implementation for Internet, intra- and extranets. To explain that, we have
to contrast the virtual internet concept to its conceptual cousins: SDN and
NFV.

SDN stands for software defined networks, NFV for network function
virtualization. We call applications that use SDN, SDNapp’s. Currently
SDNapp’s, e.g., using OpenFlow [24] technology, may control individual
switches, setup and interact with physical Layer 2 paths. NFV implements
internet routers, home gateways, mobile base stations and other network
equipment. In the context of the Telco industry, NFV is implemented by
software running in VMs. Hence, an SDNapp might connect a network link,
carrying Layer 3 (Internet) traffic to a virtualized (NFV) router. The current
direction of SDN and NFV development is to improve network management,
promising ISPs, of course, lower cost of ownership.

The availability of private and public global SDN services is very limited.
Even science networks, such as Internet 2 and ESNET, started only recently
and on a limited scale to feature SDN services. Indeed, SDN and NFV are
positioned as a technology for network owners. This all makes SDN practi-
cally unsuitable to be used by many developers of distributed applications.
The difficulty to develop and deploy SDNapps contrasts to our approach,
where Netapps are the software that operates global scale virtual internets.
Only two or three PhD students, and an Amazon grant, were enough to de-
velop the proof of concepts for Netapps that create globe spanning, adaptive,
secure, robust and well performing virtual internets, suitable to serve many
distributed applications. For our approach to generate a distributed network-
ing infrastructure, thousands of cloud data centers are available globally. The
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use of their resources is straightforward and can be arranged via the Internet,
e.g., via web services.

This Chapter demonstrates how a virtual internet link, an IP-tunnel over
the internet, attains its optimal network topology for a given set of cloud
data centers. The publication in this Chapter shows that the QoS, in this
case round trip times, of data center based overlay networks frequently out-
perform the standard internet connection. More advanced optimization algo-
rithms may instantiate multiple paths between source and destination if that
improves and matches the quality of service the application needs.

The trial and error optimization method presented in this Chapter is generic
and allows the creation of adaptive networks that also optimize other quali-
ties besides latency, e.g., jitter and robustness. Netapps can be constructed
that optimize other aspects of the system, such as application specific layer 3
protocols, fragmentation and reassembly, encryption, etc.

This Chapter focuses on the optimization of QoS of the network. In addi-
tion to such network oriented optimization, one can also optimize, via dis-
tribution and scaling, parts of the application itself. In Chapters 5 and 6 we
take run-time distributed application qualities into account and explain the
concept of an adaptive virtual infrastructure.

This Chapter, in combination with Chapter 4, shows that a virtual inter-
net is a well performing, software generated and possibly globe spanning
internet subnet. One can envision that a future telecommunication, internet
and distributed application infrastructure consists of end systems, a finely
distributed set of data centers and telecommunication links that intercon-
nect these. Networks are formed in the cloud, packet switching and routing
is done in the cloud, most applications run in the cloud. Most application
and their internet connections will run in the cloud. Hence, the virtual in-
ternet subnets will exceed the number of real subnets in the Internet. The
Internet is pushed into the cloud.

3.1 introduction

Route selection in the Internet is a consequence of hand-written business-
inspired policies. These policies are optimized for and reflect local
interests of an autonomous system (AS). However, implementation
can be erroneous, leading to sub-optimal end-to-end connections [25].
Since there are almost no end-to-end guaranties for Internet, packets
may not travel the shortest path to its destination. As a result, appli-
cations do not necessary obtain the optimal end-to-end performance
of the Internet.

Applications can influence their own traffic via source routing pro-
tocols [26]. However, AS’es usually run protocols like MPLS [27]
which work only in a single domain. Recently, several initiatives were
launched to create programmable networks [28, 1]. Network switches
that support OpenFlow[24] technologies can allow computer programs
to enforce their own forwarding rules. However, only a few network
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operators employ such switches, and so the control over the rout-
ing decisions remains with the operators. Furthermore, the Internet
topology and its qualities at a given moment in time may only be
partly known [29], making it difficult to find optimal paths. As a con-
sequence, Internet path control is only possible for a part of a network
path.

Here, we turn to cloud technology to gain control on packet flows.
End-users can allocate virtual resources that can be used as virtual
routers. By measuring the quality of the paths between all virtual
routers and end-points, we find the optimal path between two end
points. If a path with better characteristics is found over a virtual
router, we setup tunnels and routing to control the traffic.

The automated management of such overlay networks and their re-
spective cloud resources requires dedicated control structures. Once
these control structures are designed and implemented, we need to
assess to what extent cloud resources deliver significantly better re-
sults with respect to the controllability of network properties.

In this chapter we introduce MeTRO, a framework of Management
Tools for Routers On-demand. MeTRO measures and setup routing
in a continuous adaptive manner to adjust to change in the Internet.
We evaluate our framework in a diverse setup and we find that it can
improve on path latency by as much as 95%. MeTRO exhibits such
latency improvement behaviour in 58% of the experiments. This re-
duction means that in substantial cases large scale distributed virtual
environments [30, 31] such as; multiplayer online games, distributed
military simulation, and collaborative design, become more respon-
sive.

3.2 the metro framework

Here, we describe the architecture of MeTRO, our control and mea-
surement framework, and its generic approach to cloud-hosted routers.
There are currently two strategies to create optimized paths in the
Internet: 1) let ISPs optimize or 2) use methods such as Detour [32].
Since ISPs have an incentive to optimize themselves based on cost, the
only viable option is using methods like Detour. Detour adds a fixed
intermediate hop between two hosts, to gain (partial) control over the
path that a packet takes in the Internet. However, it requires access to
physical machines located in different administrative domains.

Building on previous work [32, 33], we present a framework that
takes advantage of clouds to control as well as to optimize traffic
latency. Intuitively, MeTRO is a framework that finds the optimal path
between two endpoints by using VMs residing in the cloud. The main
idea is to add one hop (hosted by a VM) between two endpoints
and learn whether the given intermediate hop leads to a better path
between the two endpoints. Throughout the chapter we use the term
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“better path” to describe a path between two points which has the
lowest latency among the measured paths between these two points.

MeTRO defines two types of agents: 1) agents which perform mea-
surements and forward the traffic, and 2) a controller which collects
the measurement results and adjusts the paths between the agents
(by setting-up tunnels and routing). An agent typically runs inside
a virtual machine, therefore becoming a virtual router; the controller
may be deployed anywhere.

Figure 10 shows the closed control-loop implemented by our MeTRO
framework. The measurement-collect-adjust strategy allows our frame-
work to continuously adapt to the dynamic Internet environment.
During the Setup stage, the end-user chooses the virtual machine
types and locations where to deploy each agent. Next, MeTRO will
instantiate the corresponding virtual machines and collect their IPs
at the controller. During the Bootstrap stage, the controller will copy
and remotely execute the script that deploys the agent in each vir-
tual machine. These virtual machines will now act as virtual routers.
For allocating and bootstrapping the virtual machines we used Saras-
tro [2].

Once the virtual routers are running, the MeTRO controller regu-
larly cycles through the following three stages: Measurement - exe-
cutes the latency measurements scripts at every agent; Collect - after
the measurements are completed, the controller collects all data from
every agent, then calculates the fastest paths between all agents; Ad-

just - if a lower latency path is found, MeTRO will build the corre-
sponding overlay network between the endpoints, and setup routing
such that traffic is routed accordingly.

The pseudo-code in Algorithm 1 finds the optimal path between
two endpoints agenta and agentb by using a RTT table and cal-
culating all the possible paths through h agents. This RTT table is
populated by the MeTRO controller via the collected measurements.
The algorithm is executed by the controller. The lat function calcu-
lates the latency of the input path, by using the RTT table and taking
into account a constant penalty p for each hop. This penalty repre-
sents the average time required to forward a packet. The append and
remove functions append and, respectively, remove the second to last
element in the list.

Initially, lst set to agenta and agentb. If multiple better paths
are found, the path with the lowest latency is picked for setting up
an alternative path between the endpoints and dynamically create
an overlay network. Currently, we only consider latency for selecting
better paths, however, other criteria, such as bandwidth, jitter or a
combination of such metrics, can be used to define better paths. The
measurements for such network metrics could use tools like Iperf [34]
or Nagios [35]. The algorithmic complexity of Algorithm 1 is O(nh)
where n is the number nodes in the network. While implementing
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Figure 10: The closed control-loop implemented by the MeTRO framework

Dijkstra’s algorithm is more efficient, we choose this algorithm for
more clarity.

Require: iplst, lst,h,p,agentaagentb
if h == 0 then

return lst
else

fastest = lst
if lat(fastest,p) > lat(direct,p) then

return agenta,agentb
end if

for ip 2 iplst do

if ip 62 lst then

lst.append(ip)
t = findLowestPath(iplst, lst, h-1, p, agentaagentb)
if lat(t) < lat(fastest) then

fastest = t
end if

lst.remove(ip)
end if

end for

end if

Algorithm 1: findLowestPath

3.2.1 Functional scenarios

Here, we describe three different scenarios where MeTRO can be em-
ployed: 1) troubleshooting routing policies 2) reachability monitoring
and 3) virtual networks with specific characteristics.

3.2.1.1 Troubleshooting routing policies

Our framework can also be used for finding configuration errors in
routing policies. ISPs can determine if their routing policies are opti-
mal by communicating from a given point within their own network
to all the measurements nodes. Since clouds offer great flexibility, the
ISP can allocate and instantiate multiple VMs around to world by
employing our framework. If our measurement framework finds an
alternative better path, this means that somewhere in the intermedi-
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ate network a routing policy is not optimally configured. A simple
traceroute from all nodes identifies the node where the policy is not
optimal.

Clouds provide a flexible alternative to NLNOG Ring[36], as hosts
can be created on-demand for troubleshooting and debugging pur-
poses. In addition, the cost of on-demand virtual machines for col-
lecting views are marginal as opposed to continuously running and
maintaining servers. Collecting views using traceroute gives insight
in how traffic is routed. If a configuration error is made, this will be
detectable by comparing multiple views next to each other.

3.2.1.2 Reachability monitoring

Our proposed measurement framework can also be used to monitor
the reachability of a certain destination throughout the Internet. If a
destination is unreachable, it can mean that it is unavailable for ev-
ery one in the Internet. It can also mean that one of the intermediate
ISP “blackholes” the traffic or hijacks the prefix. MeTRO can monitor
multiple destinations and check whether specific prefixes are reach-
able either form inside the network, or outside the network.

3.2.1.3 Virtual networks

Another way to use our framework is to create an overlay network us-
ing clouds. While overlay networks [37, 32] and virtual networks [38]
are well studied, our framework can build a virtual network dedi-
cated to optimizing a specific metric, such as latency, bandwidth etc.,
over multiple ISPs.

Typical beneficiaries of such overlay networks are large scale dis-
tributed virtual environments [30, 31], like multi-player online games,
distributed military simulation, and collaborative design. As mea-
surement nodes are scattered around the network, dynamic tunnels
are built between these measurement nodes, and the network changes
dynamically on the basis of the underlying characteristics of the ISPs.

3.3 experimental evaluation

Our goal is to assess whether cloud-hosted virtual routers are a viable
solution for improving the controllability of network properties. To
that end, we compare a physical network of routers to virtual routers
deployed in the cloud by analyzing the quality of alternative paths
found using our Algorithm 1.

3.3.1 Experimental setup

Figure 11 shows an overview of our experimental setup consisting
of both physical and virtual resources. The endpoints of each exper-
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Figure 11: Overview of our experimental setup using NLNOG Ring, Bright
Box and Amazon EC2 resources. 1) a direct path between end-
points located in different ASes 2) A path with an additional hop
located in NLNOG Ring 3) and 4) paths using a virtual router
(VR).

iment are located in a physical network. We have two types of ex-
periments with respect to the intermediate (used for routing) nodes’
location: (a) physical-physical, where the intermediate node is also
located in the physical network, (b) physical-virtual, where the in-
termediate node is located in a cloud resource. For each type of ex-
periment we also look at each Internet protocol considered: IPv4 and
IPv6, where available.

The physical-physical experiments represent the baseline perfor-
mance. Here, we performed measurements from every host to every
other host (75⇥ 74 sets of results). Three round trip time (RTT) mea-
surements were taken every five minutes, over the span of 48 hours,
totaling to 129600 measurements from a given node to every other
node in the physical network.

For the physical-virtual experiments, we selected every possible
pair of hosts from the physical network and for each pair we deployed
several virtual routers in each cloud zone considered.

To compute the better paths between every two endpoints, we ran
our Algorithm 1 with the following parameters: the additional hop
penalty p = 0.3ms and the maximum number of hops h = 8. The
algorithm uses the measurements collected from both the physical-

physical and physical-virtual experiments as input. Hops considered
in each experiment are in a single environment, i.e., either NLNOG
Ring, BightBox or Amazon EC2.

As a physical network, we used the NLNOG Ring[36], which is an
open initiative where network operators donate servers to create net-
work debugging and monitor facilities for their networks. Each par-
ticipating ISP provides a network measurement node which allows
other ISPs to perform measurement and obtain addition information
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about the Inetnet routing topology. At the time of our experiments
the NLNOG Ring consist of 75 nodes in 72 different Autonomous
Systems. Servers in the ring are located in Europe (68), but also in
North America (3), Asia (2), Pacific (1) and Africa (1). All the servers
of the NLNOG Ring have IPv4 and IPv6 global reachable addresses.

For our physical-virtual experiments we used two different cloud
providers: Amazon EC2[39] and Bright Box[40]. Amazon EC2 has 10
regions, each with several availability zones. The regions are located
in North America (4), South America (1), Europe (1), Asia&Pacific
(4). Bright Box has one region with 2 availability zones, both being
located in Manchester(GB). Amazon EC2 only provides IPv4 connec-
tivity, while Bright Box provides both IPv4 and IPv6 connectivity.

3.3.2 Results and discussion

All results are collected in Table 1, and Figures 12 to 16. Each of them
highlights different aspects of our results and we proceed to discuss
each of them in more detail in the following.

#(Number of paths) NLNRv4 NLNRv6 BBv4 BBv6 AMv4

Direct path Faster 2324 2405 n.a. n.a. n.a.
1 hop 1050 1078 515 497 1107
2 hops 1143 696 371 243 2921
3 hops 608 473 9273
4 hops 264 392 23944
5 hops 133 230
6 hops 24 88
7 hops 4 38
8 hops 0 2

Table 1: The total number of “better paths” using a different number of hops
located either in the NLNOG Ring (NLNR), BrightBox(BB) or Ama-
zon EC2(AM), for each IP(*v4) and IP(*v6).

Table 1 shows the number of better paths found for each experi-
ment type and considering h = 0, 1, . . . , 8 hops. We notice that the
number of better paths in the NLNOG Ring is inversely proportional
to the allowed number of hops (h), while the number of better paths
in Amazon is directly proportional to h. This is due to the fact that
Amazon has multiple zones located geographically close to each other
which results in a factorial explosion of the number of paths per re-
gion, while the latency offered by the zones in the same region is
quite similar.
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Figure 12: All alternative paths using one hop for IPv4

Figures 12 and 13 plots in log-normal scale all alternative paths
found between every pair of hosts. The x-axis values represent the
latency of the direct path between each pair of hosts, while each
dot represents the percentage by which the alternative path is faster.
Negative percentages represent slower paths. Clearly, there are better
paths by using an extra hop in a cloud data center. For both IPv4 and
IPv6 we can find paths that provide 99% latency improvement for a
given source destination pair. On average we find, that if there is a
path with low latency, it is 27.53 % better than the original path for
IPv4. For IPv6 we see an average improvement of 29.69%.

Figures 14 and 15 show how many better paths are available for
each latency interval (40ms). By grouping the number of alternative
better paths, we can get an indication of where optimizations of paths
latency can be performed. For both IPv4 and IPv6 we see two inter-
vals in which more optimized paths are available: 0 till 200 and 320
till 400. It is more likely to optimize the path if the original latency lies
within either interval. The same intervals are there for both Brightbox
and Amazon EC2 (IPv4)

Figure 16 shows the NLNOG Ring nodes that provide better paths.
When resolving1 the IPs of these nodes, we found that the best per-
forming nodes are located physically close to large internet exchanges
(e.g. AMS-IX, NYIX, DE-CIS, and LINX).

1 IP resolved using GeoIP http://www.maxmind.com
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Figure 13: All alternative paths using one hop for IPv6

Figure 14: Frequency of “better paths” compared to the direct paths IPv4
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Figure 15: Frequency of “better paths” compared to the direct paths IPv6
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Figure 16: Some nodes provide better paths than others

3.4 related work

Savage et al. [32] have shown that even in situations with partial con-
trol and knowledge of the Internet topology, alternative paths can be
created that have better qualities than those constructed with the cur-
rent Internet prevailing algorithms. With a technology called Detour,
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Savage measured the performance of alternative paths that run via
intermediate nodes that were coupled to the Internet at various loca-
tions. Ly et al. [33] implemented a similar technology using traceroute
traces that confirmed the observations of Savage et al. The drawback
of both Detour and Ly’s approaches is that it requires access to the
physical machines representing the intermediate nodes. Our contri-
bution is that we use multiple clouds and an automated framework
to find and create better paths in the Internet.

3.5 conclusion

As the Internet optimization domain is partitioned due to the use of
BGP, managing static routing policies that are applied to a substan-
tial amount of prefixes in a dynamic environment is left to individual
ISP economic priorities and prone to human error. These routing pol-
icy errors often lead to bottlenecks, increased latency or traffic can
be black holed. To avoid these bottlenecks, users need control and
programmability in the network.

In this chapter we introduced MeTRO, a framework of tools that
uses cloud infrastructure to deploy alternative, virtual routers. Within
this framework, we proposed a method to explore alternative paths
with specific properties, such as low latency paths. Our results are
very encouraging showing that MeTRO decreases the latency in 58%
of the cases studied, albeit increasing the number of hops. We showed
that our framework can be used to detect unoptimized routing poli-
cies in the Internet, monitor the reachability of the Internet and create
virtual networks with specific characteristics.

§
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R E M O V I N G T H E M E M O RY WA L L I N S O F T WA R E
R O U T E R S

This Chapter is based on "Fast Packet forwarding engine based on software
circuits"[41].

The introduction of Chapter 3 sketched a picture of the future internet.
The future internet comprises telecommunication links that carry IP traffic,
which is the present day situation, as well as virtual internet links. Virtual
internet links are implemented as IP-tunnels between virtual machines that
run software routers and applications. Chapter 3 prognotized, on basis of the
versatility and security of virtual internets, that the number of virtual inter-
nets will exceed the number of regular internet subnetworks. Hence, Chap-
ter 3 forecasted that internet will be pushed into the cloud. To support such
hypotheses, one must establish that the performance of the virtual internet
infrastructure is at least comparable as implementation alternatives – dedi-
cated Internet routers. The previous chapter showed that latency optimized
virtual internets outperformed regular internet connection in more than half
of the cases. But what about the performance of the virtual internet routers
themselves? The benchmark is set by high end routers that frequently deploy
special hardware for packet forwarding, in particular routing table lookup.
This was the inspiration for the work presented in this chapter. This Chapter
describes the methodology to confine the routing table lookup algorithm to
the CPU, thereby minimizing memory interaction. As this memory interac-
tion stalls the processing activity in the CPU, this stalling effect is called the
memory wall.

One can identify two implementation extremes of Internet routers. In-
ternet backbone routers, designed to achieve a high performance, frequently
use specialized chips to optimize the packet forwarding capacity. Cheaper PC
hardware frequently hosts the large number of software routers near the edge
of the network. The better network cards in such PCs, offload the CPU and
perform many packet operations, e.g., layer 3 checksum computing, very ef-
ficiently. Yet, the routing process is predominantly implemented in software.
Packet forwarding algorithms for such software routers have been well stud-
ied. Traditional algorithms rely heavily on memory loading operations. A
common issue with these routing table lookup algorithms, is that memory
operations form a bottleneck. The memory bus operates at a fraction of the
processors clock-frequency. For every memory load operation, a CPU can ex-
ecute more than 1000 instructions. The algorithm presented in this chapter
avoids fetching data from memory. Instead, it uses four basic instructions:
AND, OR, XOR and NOT. With only these instructions, the algorithm computes
the destination addresses thereby avoiding memory operations. As a result,
we achieve a factor ~10 performance gain in routing table lookup on a CPU.
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In case the algorithm is offloaded to a GPU (graphic processing unit), the
performance is enhanced substantially further, a factor ~100. This means
that the packet forwarding performance of software routers in virtualized
networks is comparable to that achieved with internet backbone routers.

There is much relevance of our work for the Telecom industry. Here the
softwarization of network elements is known as Network Functions Virtu-
alization, or NFV. Usually, network functions are applications running on
VMs. To reach a certain performance level, the number of parallel working
virtual machines is scaled. Our work brings another and novel mechanism
to enhance the performance of routers in NFV technologies. Combining the
results of this chapter with those presented in Chapter 3, we can implement
a virtual network link that has better latency and an equal or better through-
put as the default Internet path. Furthermore, our fast table lookup method
is applicable in many other areas in software engineering.

These engineering achievements can have a large impact. We already
stated that a future Internet infrastructure could be based on data centers,
connected by telecommunication networks. The data centers host both the
virtual networking equipment as well as the applications themselves. The re-
sults of the current and previous chapter show that virtual internets perform
very well. Moreover, given a finely distributed set of data centers, Netapps
can optimize continuously the topology and scaling of the components, i.e.,
network elements, tunnels, and applications of the virtual internet. Chapter
5 and 6 investigate adaptive distribution and scaling of virtual infrastruc-
ture components and application parts.

4.1 introduction

The idea of using general purpose computing technologies to replace
dedicated, expensive router architectures is not new. Different imple-
mentations of packet processing and forwarding for commodity hard-
ware already existed since the early 2000s [42, 43, 44, 45]. For example,
in [46], Han et.al. presented Packet Shader, a high-performance soft-
ware router framework for general packet processing that can achieve
up to 39 GByte/sec on modern CPU/GPUs heterogeneous systems.
Their results point out two interesting conclusions: (1) routing using
architectures with discrete GPUs suffers from a CPU-GPU communi-
cation bottleneck1, and (2) the performance of the forwarding itself is
limited by the internal bandwidth of the GPU.

While the first problem can be addressed by replacing discrete
GPUs with fused architectures [47, 48, 49], the latter is an inherent
problem of the way forwarding is implemented. Specifically, to make
a forwarding decision, i.e., to choose to which interface or next hop a
packet should be forwarded, traditional algorithms use several mem-
ory lookups [50] for each packet. When using multi-core or many-

1 A discrete GPU platform features a CPU (host) and one or several GPUs (devices)
connected on a PCI/e bus.
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core architectures (such as modern CPUs or GPUs), these algorithms
are applied in parallel for multiple packets, potentially leading to a
significant improvement in the throughput of the system.

Intuitively, the number of packets to be analyzed and forwarded
in parallel should be limited by the number of cores that perform
the analysis; for regular GPUs, one can have as many as hundreds
of such cores. However, in practice, the number of decisions that can
be taken in parallel is limited by the available memory bandwidth
of the system: if every unit accesses memory at the same time, the
memory bandwidth is quickly saturated, and the amount of concur-
rency in the system decreases. This performance penalty aggravates
when multiple memory accesses are needed. Naturally, the overall
throughput of the forwarding process will decrease as well.

Even so, modern multi-core CPUs and GPUs remain attractive for
implementing such massively parallel forwarding engines because
they have very high memory bandwidths - 20–40GB/s for CPUs,
and over 300GB/s for GPUs. But their computational throughput
far exceeds these memory bandwidth numbers, reaching 100 to 1000
GFLOPs for 8-core CPUs and GPUs, respectively.

In this work, we propose an approach to exploit this extreme com-
putational power. Specifically, we aim at replacing memory lookups
with compute operations, thus utilizing much more of the CPU/GPU
cores and relieving the memory bandwidth pressure. We base our
work on a technique called bitslicing [51, 52]. Bitslicing appeared in
the early 1960’s, proposing to use 1-bit logic chips as building blocks
to create multi-bit CPUs. In the context of forwarding decision mak-
ing, we use bitslicing to create a logical circuit from the forwarding
table or forwarding information base (FIB). The circuit, implemented in
software, consists of simple logical operations such as AND and OR, that
take at most 2 cycles on modern architectures. Combined with the
parallel forwarding decision-making, which uses the same instruction
for multiple packets, this approach is ideal for modern single instruc-
tion multiple data (SIMD) units (present in CPUs) and single instruction
multiple threads (SIMT) processors (like GPUs). This approach elimi-
nates most memory lookups, avoiding performance limitations due
to memory bandwidth saturation.

In this chapter, we distinguish between routing, the process map-
ping destination networks to output links, and forwarding, the pro-
cess which consults the routing database to decide which output link
a single packet should be forwarded on. This chapter focuses on the
latter and makes the following contributions:

• We present a packet forwarding engine that uses bit-slicing to
concurrently process packets. This approach alleviates the band-
width saturation limitations of the traditional solutions (Section
4.3).



42 4 removing the memory wall in software routers

• We present an algorithm to generate bit-slicing kernels for for-
warding IPv4 traffic (Section 4.4) and discuss the requirements,
limitations, and potential impact of our bit-slicing approach.

• We provide a qualitative and quantitative evaluation of the ad-
vantages and disadvantages of our bitslicing approach. Our re-
sults show significant performance advantages for the bit-slicing
method, especially for small and medium routing tables (Sec-
tion 4.5).

4.2 limitations and applicability

To handle traffic in a production setting, our approach sacrifices some
features which are common in production networks. Some of these
limitations imposed by our approach are fundamental, while others
are for future work.

Routing updates

In order to accommodate for changes in the forwarding table, the
kernel needs to be regenerated with the updated information and go
through the OpenCL compile chain. This takes a few milliseconds for
the table sizes that we used in our benchmarks. One way to optimize
this process is to keep kernels in memory for cases in which a net-
work perturbation is reverted, such that the network is restored to an
old kernel readily available. In addition, it is possible to keep a repos-
itory of kernels readily generated (from older versions of the routing
tables, likely to be restored) and pre-compiled, such that we avoid the
overhead of generating and compiling them. We note that the host ap-
plication does not need restarting when these changes happen, as it
is provided with a mechanism that detects such changes, generates
and loads the kernel immediately, and can restart processing (pre-
buffered) traffic within tens of milliseconds.

Another approach to accommodate with routing updates is a hy-
brid approach, using both this approach and a traditional memory ap-
proach. The complexity of updating routing tables of memory lookup
approaches are typical O

�
1
�
, thus cheaper to this approach. When

confronted with a routing update, first update the memory lookup
routing table, switch from bit-slicing to memory lookup, and gener-
ate a new OpenCL kernel including route update. Finally, switch back
to the bit-slicing approach using the new kernel.

Limitations and potential

Our method for forwarding packets works with batches of addresses.
In some cases, batch-processing of the IP packets is not applicable -



4.3 Design and implementation 43

for example, when traffic is scarce. In such cases, waiting for a batch
to be complete might take seconds. A simple solution is to set a time
threshold to start processing the current packets in a traditional man-
ner, or pad an incomplete buffer with additional NOP addresses and
use the bitsliced engine. Traditional routing can be done, in this case,
by frameworks such as Hermes or PacketShader.

Applicability

While our implementation and benchmarks mainly focus on forward-
ing IPv4, especially looking at destination addresses, the technique
presented here can be applied to a much broader spectrum of appli-
cations. Examples include routing on specific IPv4 packets flags such
as TTL, the option field, (port based) firewalling. Moreover, our tech-
nique is suitable for other routing and switching protocols such as
MPLS (i.e., 20-bit header) and VLANs (i.e., 16-bit header). In the case
of IPv6, for example, it takes not 1, but 7 memory lookups [46] to
determine the destination of a given packet. This gives our bitsliced
engine the opportunity to gain even more performance compared to
traditional memory lookup engines. In principle, we are confident
that the technique presented here can be easily applied to new proto-
cols with little to no modification.

4.3 design and implementation

In this section, we discuss memory lookup forwarding algorithms
and their limitations. We further introduce the bitslicing technique,
and show how it can be applied to make forwarding decisions for
IPv4.

4.3.1 Packet processing

Modern packet processing pipelines, such as those in PacketShader
or Hermes, are composed of at least six stages : (1) the packet enters
the system via the network interface card (NIC), (2) it is copied to main
memory; (3) the CPU fetches the packet’s header (4) lookup of packet
destination in the table stored in the main memory; (5) the packet is
modified if needed (e.g., the MAC address is changed), (6) forwarded
to the correct NIC transmit buffer.

In this pipeline, an important performance bottleneck is the for-
warding decision making, i.e., determining where should packets go
next [53, 54]. Recent research [54, 55, 46] has shown that GPUs pro-
vide a competitive alternative for implementing forward decision mak-
ing in stage (4). The basic idea of using accelerators (GPUs or Intel’s
Xeon Phi) for local forwarding provides separation of concerns: the role
of the CPU is to receive and transmit packets through NICs (as in
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Figure 17: The maximum memory throughput (measured in 32-bytes loads)
per core per cycle for NVIDIA (GTX*) and AMD (R*) GPUs.

traditional software routers), while the forwarding decision making
is offloaded to the accelerators that (typically) have a significantly
higher memory bandwidth.

Our work aims to improve the performance of this particular stage
by providing a new implementation of the decision making algo-
rithm and making better use of both the CPUs and GPUs. As we
focus on forward decision making only, we assume that the header
information is already transferred from the NIC to the main memory
being directly accessible to either the processing unit - be it a CPU
or a GPU. Note that this assumption does hide a significant perfor-
mance penalty (due to the data transfer) for the typical discrete CPU-
GPU architectures. For such platforms, the additional data transfers
cancel the performance benefits of the accelerated decision making.
However, existing fused architectures where the CPU and GPU[47]
share common memory spaces, do not require additional data copies.
Such systems, which are much more suitable for networking devices,
can assume data is available in the common memory as soon as
stage (1) is finished. Moreover, these devices are programmable using
OpenCL, so our implementation should work out-of-the-box for such
platforms. However, due to unavailable tools (Linux drivers, compil-
ers, and even hardware), we were unable to properly test these fused
architectures yet.

Forwarding algorithms are traditionally based on memory lookups
and are limited in performance by the low arithmetic intensity[56] of
the processing, regardless of the type of CPU or GPU that is used
(despite the 10⇥ difference in bandwidth between the two). Most of
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the time the GPU is idle, waiting for data. This is due to two as-
pects of current architectures 1) the large memory latencies for non-
cached data 2) the maximum theoretical bandwidth is shared among
cores. Figure 17 shows the minimum number of processing cycles
required to receive a 32-byte packet. The number is calculated as fol-
lows (pu_speed is the speed in processing cycles per second, cores is
the number of cores on the chip, and max_memory_bandwidth are
all specified by the manufacturer):

ratio =
pu_speed⇥ #cores

max_memory_bandwidth

The value lies, for most modern architectures, between 160 and 280

cycles. The memory bandwidth can only be achieved in ideal condi-
tions, where memory accesses are coalesced. This requirement is not
met for the case of packet forwarding decision, as no correlation can
be assumed between the packets that need to be forwarded. There-
fore, these numbers can be even 2–4 times larger. For GPUs that have
caches, these numbers are lower, but only in the case temporal locality
is available in the networking traffic.

In summary, memory lookups are expensive in both theory and
practice. As most arithmetic operations are now done within 1–2 cy-
cles, replacing memory lookups with a (larger) mix of arithmetical
instructions can become beneficial, performance-wise.

4.3.2 Bit-slicing implementation

Bit-slicing is an old technique (early 1960’s, EDSAC 2 computer [57,
51]), where identical small processing units (typically, 1-bit) can be in-
terconnected to make up a larger n-bit processor. Today, bitslicing is
mainly used for high speed software applications such as cryptosys-
tems [58, 52]. In this work, we attempt to leverage bitslicing to re-
place the memory lookups in the forward decision making with com-
putation. For determining where to forward a packet, our proposed
method consists of the following 3 steps: 1) translate the forward-
ing table to Boolean software circuit and create an OpenCL kernel,
2) batch incoming IP destination headers together and bittranspose
them, and 3) evaluate the boolean circuit to compute the destination.
The remainder of this section explains this procedure in detail.

A packet forwarding decision is essentially the following mapping:

⇢ : ↵ 7! �

⇢ is the routing table, ↵ is the destination address, and � is the
next hop in the routed path. In IPv4 routing, a network mask is used
to determine the network part of the address, and used to forward
the packet to the next hop. In the remainder we assume that network
masks are at most 24 bits for IPv4.
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For bitslicing to work, we need to translate the routing table to
an incomplete truth table which includes the destination addresses.
The truth table is then translated to logic instructions (i.e., AND/^,
XOR/�, etc.) to set the destination address. For example, for the IP
address 192.0.0.0/4, where only the first 4 (i.e., 1100) bits are used for
forwarding, we compute the following logic expression e: b0 ^ b1 ^

¬b2^¬b3. Evaluating this expression is equivalent to executing 3 AND

operations and 2 negations. We use negations (¬) to match bits that
are zero. To exploit the temporal expansion of bitslicing, we require
that n IP destination addresses are batched together and that they are
bit transposed. This results in the storage of all the first, second, etc.
bits of all n IP addresses in the same n-width CPU/GPU register.

Executing the logical expression is done in parallel and all n IP-
addresses are computed and available at the same time. The results
will be stored in the destination registers, and further bittransposed
for a correct final result. The latency of the forwarding decision en-
gine will be given by the number of operations required for 1-bit
computation (essentially, the length of the boolean expression), and
its throughput will be n.

The translation from the incomplete truth table to logical expres-
sions is straightforward. Each next hop is translated to a unique in-
terface index �. To decide where a packet should go, each logical
expression that contributes to a bit in � is evaluated for that bit. The
forwarding decision is stored in a array of at most dlog

2
(max(�))e.

If the destination is not in the routing table, the logical expressions
will not contribute any bit, and the result will be 0. Note that specific
behaviour can be assigned to � = 0 (e.g. dropping a packet or use a
default route). Routing packets in the Internet is done based on the
most specific prefix, i.e., the expression that matches most bits of the
prefix. For the case we have 2 prefixes of different lengths that point
to different destinations, we change the Boolean expression such that
contributing bits of matching expression are set correctly.

Having the routing table transformed into Boolean circuits, we
translate it into an OpenCL kernel [59]. Note that additional boolean
optimizations can be applied to the incomplete truth table (e.g., us-
ing the Quine-McCluskey algorithm[60]). We chose not to apply such
optimizations to limit the overhead of the kernel generation. How-
ever, in case the performance results of the kernel are not satisfactory
(which has never been the case for our experiments so far), these op-
timizations can be easily applied, trading-off kernel generation over-
head for kernel performance.

4.4 kernel generation

Because our implementation is done in OpenCL, we have two types
of code 1) host code, responsible for initializing buffers, compiling and
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launching the device code, and transferring data from host to device
memory, and 2) device code also known as a kernel.

Data: routingTable, numNexthops, ips
Result: kernel
for i = 0; i < length(routingTable) do

s = "unsigned int p" + i + " = "
for j=0; j < length(routingTable[i]); j++ do

if j > 0 then

s = " & "
end

if routingTable[i][0][j] == 0 then

s += " ⇠ips[id + " + i + " ] "
end

else

s += " ips[id + " + i + " ] "
end

kernel += s
end

end

nh_max = dlog
2
(numNexthops)e

for k = 0; k < length(nh_max) do

s = ""
for l = 0; l < length(routingTable) do

if (1<<k) & routingTable[l][1] == 1 then

if check_lmp(l, k) then

s += lmp(l,k,s)
end

else

if isEmptyString(s) then

s = " p" + l
end

else

s += " k p" + l
end

end

end

end

if not isEmptryString(s) then

kernel += "result[rid + " + k + "] = " + s + ";"
end

end

Algorithm 2: Kernel generation algorithm

To make forwarding decisions for packets we must generate ker-
nels that reflect the routing table. Each change in the routing ta-
ble requires a new kernel to be generated. Algorithm 2 is a pseudo
code description of the kernel generation algorithm, which builds the
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kernel as a collection of strings. The kernel is compiled and even-
tually launched by the host. The inputs of the algorithm are the
routingTable, numNexthops, and ips. The routingTable holds the
list of the prefixes (index 0) with corresponding nexthop (index 1).
The ips is an array that holds the binary transposed destination ip-
address. First, every prefix is translated to the binary representation.
Every bit in the prefix, either 1 or 0 ( which is negated, i.e., "⇠" )
is expressed with the logical and operator "&". In addition, the id

and rid are filled in by the global work-item id, for id multiplied
by 24 as we have prefixes of at most 24 bits, and rid multiplied by
dlog

2
(numNexthops)e, such that every thread is working on its own

working item.
When the generated statements are executed, every expression is

evaluated and stored in a single pi. The second part of the algorithm
is to determine which pi contributes to which nexthop. For this we
match the nexthop index number against the binary index for the
array. If the expression matches, it will logically or the expression.
Prior to checking if an expression contributes to an interface it will
try to see if the expression competes for the longest matching prefix
as described in Section 4.3.2. The algorithm described here will return
only the core of the kernel, the only part that is needed extra are the
function statements and the setting of variables id and rid, as can be
seen in Figure 18.

4.5 evaluation

In this section we present a thorough evaluation of our method. There-
fore, we analyze the performance of our bitsliced engine on multiple
GPU and CPU platforms, and we compare it against a state-of-the
art algorithm (based on memory lookups) running on the same plat-
forms.

Table 2: A high-level comparison of the tested architectures. The names in
this table will be used in all performance graphs presented in this
section.

Name Architecture #cores Throughput Bandwidth

GTX480 GPU, Fermi 480 > 1345GFLOP ⇠177GB/s

C2050 GPU, Fermi 448 > 1228 GFLOP ⇠60 GB/s

K20 GPU, Kepler 2496 > 3524.35 GFLOP ⇠208 GB/s

SB (Intel Xeon E5-2630) CPU, SandyBridge 12 ⇠ 384 GFLOPs ⇠42.6 GB/s

6C (Intel Xeon X5650) CPU 12 ⇠306 GFLOPs ⇠ 32 GB/s.

4.5.1 Experimental setup

DIR24 is an IPv4-specific algorithm that uses an array of 224 entries
(indexed by 24 bits keys) to store the forwarding information. In our
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__kernel void
bitslice(__global unsigned int *i, __global unsigned int *r)
{
int id = 24 * get_global_id(0);
int rid = 2 * get_global_id(0);

// 2.104.63.0/14 => 00000010011010, if = 1
unsigned int p0 = (~i[id + 0 ]) & (~i[id + 1 ]) & (~i[id + 2 ])

& (~i[id + 3 ]) & (~i[id + 4 ]) & (~i[id + 5 ]) & i[id + 6] &
(~i[id + 7 ]) & \\

(~i[id + 8 ]) & i[id + 9] & i[id + 10] & (~i[id + 11 ]) & i[
id + 12] & (~i[id + 13 ]);

// 29.247.95.0/15 => 000111011111011 if = 1
unsigned int p1 = (~i[id + 0 ]) & (~i[id + 1 ]) & (~i[id + 2 ])

& i[id + 3] & i[id + 4] & i[id + 5] & (~i[id + 6 ]) & i[id +
7] & \\
i[id + 8] & i[id + 9] & i[id + 10] & i[id + 11] & (~i[id + 12

]) & i[id + 13] & i[id + 14];

// 89.176.76.0/20 => 01011001101100000100, if = 3
unsigned int p2 = (~i[id + 0 ]) & i[id + 1] & (~i[id + 2 ]) & i[

id + 3] & i[id + 4] & (~i[id + 5 ]) & (~i[id + 6 ]) & i[id +
7] & i[id + 8] & \\
(~i[id + 9 ]) & i[id + 10] & i[id + 11] & (~i[id + 12 ]) & (~

i[id + 13 ]) & (~i[id + 14 ]) & (~i[id + 15 ]) & (~i[id +
16 ]) & i[id + 17] & \\

(~i[id + 18 ]) & (~i[id + 19 ]);

r[rid + 0] = p0 | p1 | p2;
r[rid + 1] = p2 ;
} ⇧

Figure 18: Example of a generated kernel for 3 prefixes and 3 nexthops
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DIR24 implementation we shift the destination IP address of incom-
ing packets by 8 bits and use the remaining 24 bits as an index for the
array. Route prefixes shorter than 24 bits will be expanded in the array.
For example, the prefix 123.45.0.0/16 will have 2

24-16 = 256 array
entries associated with it: from 123.45.0 (which is position 8072448)
through 123.45.255 (position 8072703). Using this indexing scheme,
we require exactly one memory lookup per IP packet.

We have implemented both the DIR-24 and our bitslice implementa-
tion in OpenCL [59]. OpenCL is a functionally portable programming
model that allows the execution of the same parallel code on different
families of devices. We chose OpenCL because we want to verify the
ability of both modern multi-core CPUs and GPUs to handle forward-
ing. We have run experiments on five different platforms, all part of
DAS4[61]. The CPU and GPU details are presented in Table 2.

To benchmark our implementation, we generate a routing table
with P prefixes and I interfaces. Each prefix pi 2 [0, 224), i 2 [0,P)
has a subnet mask between 0 and 24 bits, randomly chosen. Each pi

is assigned (for redirection) to an interface, randomly chosen between
0 and I. For the experiments included in this chapter, we choose
P 2 {10, 100, 1000}, to mimic three routing tables, and we vary the
number of interfaces I 2 {3, 7, 15, 31, 63}. We note that these numbers
are representative for the majority of the online routers, especially
those for small and medium enterprises.

Finally, to simulate traffic, we generate 2
26 random destination ad-

dresses from the routing table. To simulate that the traffic to be for-
warded is random, we introduced a reuse distance parameter, r, in our
traffic generator. When r is very large, there will be very little repeti-
tion between prefixes in the traffic (close-to-random traffic). When r is
small, we mimic traffic that is more "directional", exhibiting some de-
gree of temporal locality. To take r into account, we construct the traf-
fic as follows: after r entries that are randomly generated, the same
r entries are repeated until we reach maximum 2

26 entries. In this
chapter, we present results with r 2 {1, 8, 256, 8192, 8192000}: where
r = 1 is the identical traffic case, and r = 8192000 is the fully random
traffic.

4.5.2 CPU vs. GPU performance

We present the performance of both DIR24 and bitslice in Figures 19
for the CPUs, and 20 for the GPUs, aiming to see how different
generations of platforms impact the obtained performance. In this
experiment we use a very high reuse distance, simulating close-to-
random traffic. Finally, we use the same OpenCL implementation,
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Figure 19: Results for the DIR24 and bitslicing on different CPUs. The hori-
zontal axis specifies P-I - the numbers of prefixes and the number
of interfaces in the routing table. The vertical axis shows the exe-
cution time in seconds for the different P-I, in log scale. Measure-
ments are taken with reuse distance r = 8192000 and workgroup
size wg = 256.

Figure 20: Results for the DIR24 and bitslicing on different GPUs. The hori-
zontal axis specifies P-I - the numbers of prefixes and the number
of interfaces in the routing table. The vertical axis shows the exe-
cution time in seconds for the different P-I, in log scale. Measure-
ments are taken with reuse distance r = 8192000 and workgroup
size wg = 256.



52 4 removing the memory wall in software routers

with a workgroup2 size of 256 (the following sections will analyze
the impact of this choice).

We note that the bitslice version shows higher performance (i.e.,
lower execution time) for both CPUs and GPUs. For medium sized
tables (P = 100), the performance gain approaches an order of magni-
tude. This difference appears because small tables generate relatively
simple Boolean circuits, thus requiring only a small number of oper-
ations to compute a destination. When the number of prefixes P is
larger, more arithmetic instructions are needed, and the bitslice ker-
nel becomes more expensive. Therefore, for P = 10000 prefixes, we
see the performance of the two approaches converging. Of course, if
the number of prefixes grows even further, we expect the DIR24 ver-
sion to become the better of the two performance-wise, as its perfor-
mance is practically insensitive to the size of the routing table (hence
the relatively straight lines for DIR24 in the figures). The results for
P = 10000 are omitted in this chapter, as these large tables would
only execute sporadically. We expect this is due to the large number
of instructions for these tables. For small tables we see only a minor
performance increase, the authors suspect that this is a driver nvidia
graphics card problem (Cuda version 6.0).

We also note that changing the generation of devices to be used for
our forwarding engines does not deliver any significant performance
improvement. DIR24 is slightly more sensitive to these changes, prob-
ably given the differences in the memory architectures of the systems
we tested. Finally, we note that the CPU results show greater variation
between different P - I combinations. This behavior is a typical side-
effect of using OpenCL on CPUs and the changes this fine-grained
model brings to the thread scheduling, the caching behavior, and the
auto-vectorization of applications [62, 63, 64].

In addition, the performance comparison between CPU and GPU
shows a significant difference between the two solutions, which is
somewhat expected given the low parallelism of the kernel: we only
process 128 packets3 per core at the time, which can be dealt with
quite well by the SIMD cores of the CPUs we used.

4.5.3 OpenMP DIR24 implementation

In a second attempt to boost the performance of DIR24, we have also
implemented it using OpenMP, to make sure that potential caching
and granularity artifacts that OpenCL introduces are removed. The
results of the comparison (CPU-only, as OpenMP can only run on
CPUs) are presented in Figure 22. We note that the OpenMP does

2 Threads in OpenCL are grouped in so-called workgroups. The size of these groups
affects thread scheduling on both the CPU and the GPU, and thus can have perfor-
mance consequences.

3 This is the width of the SSE unit of the Intel Xeon E5 2630 and X5650
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deliver better performance than DIR24 implemented in OpenCL, but
it still under performs when compared with the bitsliced engine.

4.5.4 The impact of caching

Figure 21: The influence of caching on the DIR24 algorithm for different
CPU platforms

In our previous experiments, we have assumed that the traffic that
needs to be forwarded is random. We expect, however, that DIR24 is
sensitive to different types of traffic, experiencing high performance
for smaller r, decreasing as r is increasing. In the implemented DIR24
algorithm, the smaller reuse distance r for the traffic generated mim-
ics the load behavior of hash lookup algorithms[50, 65]. For the bit-
slice engine, r should have no direct impact on performance, because
this implementation uses no memory lookups. The results of varying
r for Different CPUs are presented in Figure 21.

We note very little performance improvement in the DIR24 algo-
rithm for the CPU platforms. We believe this effect is due to the
negative impact of OpenCL’s fine granularity on the effectiveness of
caching [62]: due to the scheduling of work items on threads and
cores (determined by the implementation and mapping of the model
on the architecture - in this case, the Intel SDK), the accesses pattern
of neighboring elements becomes unpredictable. As expected, the bit-
slice shows no significant variation for better or worse caching. For
completeness, we ran the same experiment with DIR24 and various
reuse distances on the GPU platforms. Similar with the CPUs, our
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Figure 22: The impact on the performances for different bit-size. The com-
parison between OpenCL and OpenMP for DIR24 algorithm on
different CPU architectures. The results for OpenCL are obtained
with wg = 256, and the reported OpenMP results are the best
ones when varying the number of threads from 2 to 16. The reuse
distance is r = 8192000.

results show no significant performance variation due to potential
improved caching, meaning that our bitsliced engine remains supe-
rior to DIR24 even for non-random traffic.

4.6 related work

In this section we give a brief overview of related research and po-
sition our work in this landscape. IP lookup algorithms have been
well studied over the past decades. The very first solutions were soft-
ware based, but later designs were implemented in dedicated circuits
(Application-Specific Integrated Circuits or ASICs) to overcome the
mismatch between network and lookup processing speeds.

Traditionally, packet forwarding algorithms use trees to limit the
memory usage of the system. In the 1990s, Radix trees [66] dominated
the landscape for forwarding packets. To optimize for space, the radix
tree data structure merges nodes which have only a single child. To
reduce the number of search steps, Nilsson et.al. proposed in [67]
to compress long paths to speedup forwarding. Another proposed
optimization is n-ary branching [68], where multiple small arrays of
n elements are used, allowing for better caching.
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Some solutions are load-optimized as opposed to space-optimized
to gain more performance. One example is DIR-24-8 [53] (referred to
further as DIR24), where the almost complete IP space is mapped in
memory to the next hop. Similarly, the Lulea scheme [69] exploits the
tree like structure with three levels arrays (using multiple tables of
hold portions of the IP space) and then uses compact representation
of pointers. In the same race to speedup the forwarding, Waldvogel
et.al. [50] propose the use of separate hash tables for each prefix
length, starting the search from the most specific prefix and ending
at the least specific one. This scheme is elegant but not particularly
fast compared to other solutions for IPv4. Finally, several algorithms
exploit on-chip caches, such as those in [65] and [70].

When GPUs emerged as promising bandwidth-rich architectures,
GPU-based software routers were proposed. In [46], Han et.al. intro-
duced PacketShader that demonstrated the potential of using GPUs
by showing a throughput of 39.2Gb/sec. PacketsShader uses a hybrid
approach, where both the CPU and the GPU work to forward traffic.
Hermes [71], introduced shortly after PacketShader, also used a com-
bination of CPU and GPU routing, and provided the added benefit
of Quality of Service (QoS). Both PacketShader and Hermes separated
the forward lookup engine from the packet handling: the packet han-
dling is done on the CPU (avoiding unnecessary data transfers to the
GPU), the lookup engine is executed on the GPU.

In 2011 another GPU lookup engine GALE [54] has been proved
to achieve higher forwarding speeds than PacketShader. GALE uses
a single table which stores all possible prefixes no longer than 24

bits, resembling the DIR24 algorithm [53]. In 2013, Li et.al. introduced
a GPU accelerated multi-bit tree (GAMT) [55] lookup engine, an en-
gine that explicitly handles forwarding tables updates. GAMT out-
performs GALE, but it still uses memory lookups to decide where to
forward the packet.

In fact, all the above-mentioned systems and engines are based
on memory lookups, i.e., for every packet some information regard-
ing the destination has to be fetched from memory. This approach
is ultimately limited by the bandwidth of the system that remains
much lower than the computational throughput for many modern
architectures. In this work, we present an orthogonal technique: we
build an engine that computes the destination of a packet by evaluat-
ing software-based Boolean circuits in parallel and capitalizes on the
much larger computational throughput of modern parallel architec-
tures.

4.7 conclusion

While routing on commodity hardware has been researched exten-
sively, we are trying to improve upon existing approaches by explor-
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ing new methods. In this chapter, we explored a new opportunity
to provide good performance for the forward decision making in
software on commodity hardware. Our new technique, based on bit-
slicing, which replaces the traditional memory lookup based scenar-
ios for identifying the destination of a packet with a compute-friendly
version. We have implemented this technique in OpenCL, to have
quick access to multiple families of platforms, and evaluated it.

Our evaluation indicates that the bit-slicing technique is useful as
long as the complexity of the routing table remains manageable. If
the number of operations needed to compute the destination is too
large (more than 10000), the performance of memory lookups will
surpass the performance of bit-slicing. We have also shown evidence
that this first implementation outperforms the traditional solutions
implemented in both OpenCL and OpenMP on GPUs and CPUs.
Therefore, the applicability of our technique makes it ideal for packet
forwarding algorithms with small routing tables, such as MPLS or
VLAN. Finally, we have shown that that our bit-slicing achieves simi-
lar speedups on both CPUs and CPU. Meaning that even on low-end
CPU, GPUs and even fused architectures such as many consumer
products can benefit from the presented technique.

§



5
C O M P U T I N G T H E C O 2 C O S T O F G L O B A L LY
D I S T R I B U T E D A P P L I C AT I O N S

This Chapter is based on "A decision framework for placement of applications
in clouds that minimizes their carbon footprint"[72].

The virtual internet concept allows to scale and distribute applications
globally, potentially using a significant amount of ICT infrastructure and
having a likewise environmental impact. Hence, energy efficiency and mini-
mal CO2 emission are relevant design issues for virtual internets. The work
in this Chapter provides a model that estimates the CO2 system emissions
and allows to create Netapps that minimize the environmental footprint of
virtual internets.

The model that computes the CO2 emissions is quite elaborate and com-
bines results presented in scientific literature. In particular, the CO2 emis-
sions of both computing and networking elements are included as well as
the power efficiency of data centers. Furthermore, the model incorporates
the effects of the production process of the electric power (i.e., hydro, brown
cole, natural gas, etc.). Although we were not able to verify the model ex-
perimentally, it does provide quantitative results where none was available
hitherto. Importantly, the method does not need, or reveal, specific details
of the application, the applicability is generic. With additional engineering,
the model can be provided as “a service” to Netapp designers and forms an
“hello world” for scientists who want to improve upon it.

We can combine the results of the previous chapters with this chapter.
One can use this chapter to calculate for a given CO2 budget the number
of VMs and how they are distributed over a set of data centers. With the
algorithms provided by Chapter 3 one can create optimal performing virtual
internet paths between the VMs. With the technology of Chapter 4 one can
implement fast software routers. With this chapter one can optimize a VM
distribution in such a way that CO 2 cost is acceptable. The next chapter
provides a method that, given the VM distribution, optimizes a distributed
application on them. Here, NetApps maximize the performance of applica-
tions by distributing them most efficiently over available VMs.

5.1 introduction

From a user’s perspective, reducing the environmental load of the
computational tasks is equivalent to looking for a green data center,
i.e., a data center with a low power usage effectiveness (PUE). A data
center with a low PUE uses it energy more efficient. Many data cen-
ters advertise their greenness as an added value for customers. A re-
cent study [73] shows that 7 1% of the data centers measure the PUE

57
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and that the mean value is about 1.8. Another survey for data centers
in Europe [74] came up with a higher mean value of the PUE. Some
large data centers claim to have a PUE approaching the theoretical
value of 1. We argue that the PUE is not the only factor to consider:
the energy sources powering a data center and the network used to
move the data are also important, as they determine the amount of
CO 2 emitted for a given task.

We will present a framework that facilitates a user to decide where
to perform a task, whether at a local data center or remote at a cleaner
data center. The framework does not only take the CO2 emission of
the data centers into account, but also estimates the CO2 emission of
the transport network between them when input/output data accom-
panied the task. We can do this by exploiting the relation between en-
ergy produced in kWh and CO2 emission for different energy sources
(see equation 9). The CO2 emission of the network of a data center is
a modest part of the total CO2 of the data center [75]. However, de-
ciding if offloading of an individual task to an optional cleaner data
center is preferable, the contribution of the network (data center LAN
and transport network) can be a substantial part of the decision. This
means that if the decision framework introduced in this chapter will
be applied to all jobs of a data center, the total CO2 emission of both
the data center and the optional cleaner data centers for offloading
tasks will decrease.

The framework can make a prediction of the total CO2 emission
for different scenarios, namely software interactive computation and
hot or cold data storage. For each scenario we identify the equipment
required in the local and the remote data center, e.g., for a compu-
tational task other equipment is used than for hot data storage. Sub-
sequently we use models including the power consumption of the
devices in use. In this chapter we will focus on the computational sce-
nario, but the interested reader can find some details of the storage
scenario in [76, 77].

A common aspect of all scenarios considered is the amount of data
involved. The input data determines the energy cost of the data trans-
port part, first through the LAN of the local data center, then across
the core network, Internet or light path, and finally through the LAN
of the chosen remote data center. When output data plays a role we as-
sume that the user is located near the local data center, so the energy
cost associated with the output data is the energy cost for the local
LAN versus the cost of the remote LAN and the transport network.

The equipment present in a data center, including the LAN devices,
can be more realistically identified than the number of devices in a
transport network to another data center. For the former we chose the
same internal architecture for both data centers being compared; this
allows us to purely focus on the sustainability of both. The latter in-
stead depends not only on the type of network, Internet or light path,
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but also on the geographical location of both data centers. Therefore,
our framework makes use of network models depending on the type
of network and on the location of both endpoints to give an estimate
of the minimal number of hops in the network. Furthermore, the ge-
ographical location of both endpoints determines the possible coun-
tries crossed by the shortest path transport network. These estimates
make it possible to attach a CO2 emission to the transport network.
Data on the energy types used by different European countries is
available. If the transport network e.g., connects a data center in the
Netherlands with one in Austria, a considerable part of the shortest
path network will cross Germany. So the energy cost can be divided
in three contributions, according to the distance spanned in each of
the countries crossed. For each country we can calculate a mean CO2

emission based on the types of energy sources used in that country
[78, 79, 80, 81, 82, 83].

The rules applied to facilitate a user in his decision can also be
applied by a scheduler of a data center. If a user can specify the com-
plexity of his task, i.e., how computation time or the amount of output
data scale as a function of the input data, a scheduler can determine
where to schedule the job such that the emission of the task in gr.
CO2 is minimal. In that case the user need not to know about remote
data centers and their PUE’s, because this knowledge resides in the
scheduler’s database.

5.2 related work

There are different aspects one can focus on in the optimization pro-
cess of data center infrastructure costs. We chose to concentrate on
CO2 emission costs, but there are other possible focus points such as
economic costs, power utilization and infrastructure utilization. For
each one of these costs there is ample existing research: namely for
economic costs the work done by [84, 85, 86], for power utilization
the work by [85, 86] and [84, 87] for infrastructure utilization.

Optimization of each of these aspects can lead to different out-
comes. For example, a data center running more energy efficiently
but supplied by energy produced from brown coal has a higher CO2

emission cost than a data center operating much less efficiently that
is using hydroelectric power.

In this chapter we focus on CO2 emissions costs. What for us is
of interest is the ever-increasing effort in modeling the power con-
sumption of networks and data center equipment. Understanding the
power consumption in more detail of networks and computer equip-
ment and their behaviour under different conditions, gives the oppor-
tunity to better predict the impact of cloud computing and storage on
the environment and to develop algorithms and strategies to reduce
the carbon footprint. The way we predict the energy consumption of
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LAN’s and transport networks is based on the work of Baliga et al.
[88].

We distinguish different kind of networks, LAN’s, Internet and
light path, each with their specific type of equipment. Our novel con-
tribution is that we integrate and extend different models into a single
decision framework for greener computing. The models used can be
easily enhanced, allowing the framework to evolve if one wishes. Our
main impetus for the framework presented is that not only end users
but also data centers’ operators and cloud service providers should
think under what conditions it is better to host a job locally, or to host
it elsewhere.

5.3 energy model

When deciding to move data and the accompanied computation from
a local to a remote data center we have to define an energy consump-
tion metric that accounts for both data centers and the transport net-
work between them. With this metric we should be able to calculate
values for the following equation that indicates when movement to a
remote data center is to be preferred above local processing:

Energy cost local processing >

Energy cost network+ Energy cost remote processing
(1)

where:

Energy cost network =

Energy cost of local data center LAN+

Energy cost transport network +

Energy cost of remote data center LAN

(2)

In the following sections we will focus on two different aspects that
contribute to equation 1: how efficient a data center uses its energy,
and what are the different components used in the data center and
the network.

5.3.1 How efficiently a data center uses its energy

To rate the energy efficiency of data centers the commonly used num-
ber is the PUE. The PUE is expressed as the ratio of the total power
consumption of a data center (PTOT ) to the total power consumption
of IT equipment like storage devices, servers, routers (PIT ).

PUE =
PTOT

PIT
, 1 < PUE < 1 (3)
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In the calculation of the PUE of a data center all equipment that
is not considered a computing device, like pumps, air conditioners,
lighting, are part of PTOT only, whereas the power used by servers,
storage equipment, network equipment are incorporated in both PIT

and PTOT .

5.3.2 The different data center and network components used

An important conclusion of a recent study by Tucker [89] is that in a
global scale (data) network, the energy consumption of the switching
infrastructure is larger than the energy consumption of the transport
infrastructure’. We will therefore make a distinction between optical
communication systems and conventional Ethernet. We will restrict
ourselves to the case where the end user is directly attached to the
data center clouds/clusters via a corporate network. The user (or a
scheduling application on his behalf) must decide whether the data
with the accompanied computation stays at a data center or should be
moved to another data center. If he decides to move data, the data will
be transported over a public data network given that different data
centers are mostly geographically separated. When data traverses the
Internet energy consumption can be estimated by adding the contri-
butions to the energy of switches, amplifiers, transceivers, etc. that
the data traverses. At both sides, at the local and remote data center,
we have the local area network (LAN) of the data center itself that
connects the data storage devices and servers to the outside world,
i.e., the transport network. To keep calculations simple we assume
the same components are present in the LAN of any data center. Ta-
ble 1 lists the typical equipment data traverses through the LAN of a
data center.

Table 3: Components of a data center LAN

LAN data center

Host (network interface)
2⇥ Switch
2⇥ Firewall
Switch
Router
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According to Table 1 we arrive (see Baliga et al. [88] Eq. 2) at the
following equation for the energy consumption per bit for the LAN
of a data center:

ÊLAN_data_center =

PUE

U
·
✓
Phost

Chost

+ 3
Pswitch

Cswitch

+ 2
Pfirewall

Cfirewall

+
Prouter

Crouter

◆
[W/bit/s]

(4)

where Phost,Pswitch,Pfirewall, and Prouter are the power con-
sumed by the host computer where the data resides, Ethernet switches,
firewall, and data center gateway router, respectively. The capacities
of the corresponding equipment and measured in bits per second are
given by Chost,Cswitch,Cfirewall, and Crouter.

Here, the factor U accounts for the utilization of the network equip-
ment, expressing the fact network equipment typically does not oper-
ate at a full utilization while still consuming 100% of the power [90],
a factor we took equals to 0.5.

Data transfers across a transport network can use two different
types of connections: the regular Internet and dedicated connections.
The regular Internet is available to all users, while in principle dedi-
cated connections (light paths) are more frequently encountered in
scientific and corporate environments for high-end users. In both
cases the data transfer can be over long or short distances, and we
account for this in our model. Figure 23 and 24 show the data net-
work building blocks we assume to be representative for Internet and
light path networks.

!

DWDM! Switch!

Router!

Switch! DWDM!

Figure 23: Network components in an Internet building block representing
a hop.

! DWDM! DWDM!

Figure 24: Network components in an light path building block representing
a hop.

With these building blocks we compose short and long distance
network paths. Multiple Internet building blocks are connected to
each other, and multiple light path building blocks are connected via
a switch with each other. The entry points and exit points for any
kind of data network are a switch connected to a dense wavelength
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division multiplexing node (DWDM). Baliga et al. [88] take a mean
number of hops for each kind of network (Internet and light path),
where we take the number of hops for each kind of network depend-
ing on the geographical position of both endpoints. Figure 25, 26,
27, and 28 show the example diagrams for single hop and three hop
Internet and light path networks.

! LAN!
data!
center!

Switch!

LAN!
data!
center!

Switch!

DWDM!

Switch!

Router!

Switch! DWDM!DWDM!

DWDM!

Figure 25: Short distance Internet of 1 hop between two data centers.

Figure 26: Short distance light path of 1 hop between two data centers.
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DWDM!
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data!
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DWDM!Internet!
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Internet!
Building!
block!

Internet!
Building!
block!

Figure 27: A long distance Internet of 3 hop between two data centers.

We write for the processing cost of a task in equation 1 :

Eprocessing_data_center(Tprocessing) =

PUEdata_center · Pcomp_host · Tprocessing [kWh]
(5)

where Pcomp_host is the power consumption of a computation host
in kW and Tprocessing the processing time in CPU core hours. If the
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Figure 28: A long distance light path of 3 hop between two data centers.

task is accompanied with Nin GByte of input data, this data will al-
ways be transferred through the LAN of the local data center. In case
the task will be processed at a remote data center, this data will be
once more transferred through the LAN of local center, subsequently
the connecting transport network and the LAN of the remote data
center. The transport cost of the LANs follow from Equation 4.

ELAN_data_center(Nin) =
PUEdata_center

U
·

� Phost

Chost

+
3Pswitch

Cswitch

+

2Pfirewall

Cfirewall

+
Prouter

Crouter

�
· 8Nin

3600
[kWh]

(6)

while the connecting transport network cost will depend on the
type of network, Internet or light path, and the number of hops:

Etransport_internet(Nin) =

PUEnetwork

U
·
��2Pswitch

Cswitch

+
2PDWDM

CDWDM

�
+

�2Pswitch

Cswitch

+
2PDWDM

CDWDM

+
Prouter

Crouter

�
·nhops

�
·

8Nin

3600
[kWh]

(7)

Etransport_lightpath(Nin) =
PUEnetwork

U
·

��2Pswitch

Cswitch

+
2PDWDM

CDWDM

�
+

�2PDWDM

CDWDM

�
·nhops +

� Pswitch

Cswitch

��
nhops - 1

��
· 8Nin

3600
[kWh]

(8)

where the factor 8 accounts for the translation of bytes into bits, as
the terms P/C are measured in kW/Gb/s.

In order to solve eq. 1 for the total energy consumption to move
data we need values for the different equipment the data traverses.
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Table 2 lists the adopted values for the power per capacity (P/C) in
kW/Gb/s of the devices listed in Table 1 and depicted in figure 23
and 24. All values are taken from [88] except the value for routers
which we obtained from measurements at our local data center.

Table 4: Power per capacity for the different components in our model.

Equipment Power per capacity [ kW/Gb/s ]

Host data storage 0.2800
Router 0.0120
Ethernet switch 0.0230
Firewall 0.0160
DWDM terminal node 0.0034

5.4 sustainability

We are interested in the sustainability aspects of the energy sources
used in the data network and data centers, and in the subsequent CO2

emissions. One way we propose to incorporate this, is to transform
energy cost in kWh to carbon emission cost effects. A kWh can be
converted into grams of produced CO2 according to the following
formula

1kWh ⇠ Xgr.CO2 (9)

where the value of the factor X depends on the type of energy
source, e.g. X = 870 for anthracite electricity production, and X =
370 for gas electricity production. In our framework values for X are
compiled from different sources [78, 79, 80], leading to the values
presented in Table 5.

We can now map the energy costs in kWh given by equations 5, 6,
7 and 8 into an equivalent carbon emission cost K in terms of grams
of CO2 produced:

Kprocessing_data_center(Xdata_center, Tprocessing) =

Xdata_center · Eprocessing_data_center(Tprocessing)
(10)

KLAN_data_center(Xdata_center,Nin) =

Xdata_center · ELAN_data_center(Nin)
(11)

Ktransport_network(Xtransport_network,Nin) =

Xtransport_network · Etransport_network(Nin)
(12)
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Table 5: Values for the factor X used in our framework as function of the
different energy sources (in decreasing value of X)

Energy source X value

Lignite/brown coal 950

Anthracite 870

Crude oil 640

Gas works gas 400

Natural gas 380

Nuclear power 66

Geothermal power 40

Biomass 30

Solar power 22

Hydroelectricity 15

Wind power 10

Decision equation 1 for transporting data with accompanied com-
putation to another data center transformed to grams of CO2 pro-
duced now reads:

Kprocessing_local_dc(Xlocal_dc, Tprocessing)+

KLAN_local_dc(Xlocal_dc,Nin) >

2 ·KLAN_local_dc(Xlocal_dc,Nin)+

Ktransport_network(Xtransport_network,Nin)+

KLAN_remote_dc(Xremote_dc,Nin)+

Kprocessing_remote_dc(Xremote_dc, Tprocessing)

(13)

The terms on the left of the equation describe the total emission
if the computation task is performed locally, while the terms on the
right site concern the emission cost if the task is offloaded to and
performed at a remote data center. Left we see the contribution of
the LAN for the data coming in once, while on the right we see the
LAN of the local data center contributes twice, as the data needs to
come in from the owner and after the decision is sent out towards the
remote data center. In case we have to deal with output data from a
computational task we assume that the one interested in the output
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data is located near the local data center, and we extend equation 13
to:

Kprocessing_local_dc(Xlocal_dc, Tprocessing)+

KLAN_local_dc(Xlocal_dc,Nin)+

KLAN_local_dc(Xlocal_dc,Nout) >

2 ·KLAN_local_dc(Xlocal_dc,Nin)+

Ktransport_network(Xtransport_network,Nin)+

KLAN_remote_dc(Xremote_dc,Nin)+

Kprocessing_remote_dc(Xremote_dc, Tprocessing)+

KLAN_remote_dc(Xremote_dc,Nout)+

Ktransport_network(Xtransport_dc,Nout)

(14)

5.5 decision framework

Equations 13 and 14 are at the basis of our decision framework. They
can be used in decision policies taken by a scheduler (section 5.1)
as well as in a web calculator available to end users (section 5.2). A
scheduler will take a decision on where to place computation based
on these policies, and it will provide the user with detailed informa-
tion on the CO2 emission cost of the chosen scenario. The complexity
of tasks, i.e., how the computation time scales with the input data and
how the output data scales with the input data, is a factor included
in the decision framework too.

5.5.1 Decision policies

If a user submits a task and indicates the processing time and the
amount of input data needed, and the amount of output data ex-
pected, a scheduler should be able to decide whether the task can
be better performed locally or at another remote data center from a
knowledge base. To decide whether a remote data center is a greener
option the scheduler applies equation 14 as a decision policy, which
can be written as follows:
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Xlocal_dc · PUElocal_dc · Pcomp.host_local_dc · Tprocessing+

Xlocal_dc · PUElocal_dc · ELAN_local_dc ·Nin+

Xlocal_dc · PUElocal_dc · ELAN_local_dc ·Nout >

2 ·Xlocal_dc · PUElocal_dc · ELAN_local_dc ·Nin+

Xnetwork · PUEnetwork · Enetwork ·Nin+

Xremote_dc · PUEremote_dc · ELAN_remote_dc ·Nin+

Xremote_dc · PUEremote_dc · Pcomp.host_remote_dc · Tprocessing+

Xremote_dc · PUEremote_dc · ELAN_remote_dc ·Nout+

Xnetwork · PUEnetwork · Enetwork ·Nout

(15)

where Tprocessing,Nin,Nout are respectively the computation time
in CPU core hours, the amount of input data and the amount of out-
put data, both in GBytes. Furthermore ELAN_local_dc, ELAN_remote_dc
and Enetwork are unit energy consumptions of the data center LANs
and the connecting transport network, expressed in kWh/GByte. Val-
ues for Xlocal_dc,PUElocal_dc,Xremote_dc, and PUEremote_dc reside
in a knowledge base of the scheduler. The values
Pcomp.host_local_dc = Pcomp.host_remote_dc = 0.355kW [88] and
ELAN_local_dc = ELAN_remote_dc = 0.0017kWh/GByte (derived from
equation 6 with the adopted values for network equipment) are con-
stants for any decision policy, whereas the value for Enetwork de-
pends on the type of network and on the number of different hops,
equations 7 and 8. In case both light path and Internet connections
are possible the scheduler can try both transport networks and the
number of hops for the connecting shortest path is retrieved from the
knowledge base too. For reasons of simplicity we take ELAN_local_dc
equals to ELAN_remote_dc and Pcomp.host_local_dc equals to
Pcomp.host_remote_dc. In an implementation of a scheduler, the sched-
uler will have knowledge of its own data center and all values con-
cerning a remote data center will be retrieved by issuing a proposal to
the scheduler of the remote data center. In that case, values for local
and remote equipment maybe different.

We will illustrate a decision made with an example, where the lo-
cal data center, with PUElocal_dc = 1.4, is situated in the Nether-
lands and is powered by electricity produced from natural gas (380
gr. CO2/kWh). Suppose the only alternative at the disposal of the
scheduler is a remote data center in Tirol, Austria, that is powered by
hydroelectricity (15 gr. CO2/kWh) and PUEremote_dc = 1.8. Values
for the connecting transport network can be prepared as knowledge
to the scheduler in the following way. If the transport connection be-
tween the Netherlands and Tirol has 4 hops, then Enetwork = 0.0014
kWh/GByte for an Internet connection and
Enetwork = 0.00066 kWh/GByte for a light path connection. For
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PUEnetwork we use a default value of 2.2 (a value based on a recent
survey [74], where we assume that more effort is put in data center
equipment than in scattered network equipment), while for Xnetwork

we use an estimate based on the shortest geographical paths between
the countries and the information on the typical energy sources used
in the countries crossed. In our example, the shortest path long dis-
tance network will most probably traverse the following three coun-
tries: the Netherlands, Germany and Austria. From data published
by the European Commission [81, 82, 83] the energy production in
the Netherlands, Germany and Austria is composed by the mixes de-
picted in Figure 29.
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Figure 29: Energy production mix for (a) the Netherlands, (b) Germany and
(c) Austria.

From these mixes we derive a mean value for the emission cost
in gr. CO2/kWh. For instance Germany use 36% Crude Oil (640 gr.
CO2/kWh), 25% Solid fuels (pulverized coal 870 gr. CO2 /kWh), 23%
gas ( 380 gr. CO2/kWh ), 12% nuclear (66 gr. CO2/kWh) and 4%
renewable (30 gr. CO2/kWh ), arriving at a mean value Xnetwork

Germany = 549 gr. CO2/kWh. In the same way Xnetwork the Nether-
lands = 520 gr. CO2/kWh and Xnetwork Austria = 474 gr. CO2/kWh.
The distance from say Amsterdam to Tirol is 980 km, of which 120
km in the Netherlands, 600 km in Germany, and about 260 km in
Austria, or 12%, 62% and 26% respectively. So, these numbers give
an estimate for the transport network Xnetwork = 0.12 · 520+ 0.62 ·
549+ 0.26 · 474 = 526 gr. CO2/kWh. Imagine a user submits a task
needing a lot of experimental data, say Nin = 10 GByte, and produc-
ing Nout = 2 GByte of graphical data during 0.12 CPU core hours.
The scheduler will respond to the user with detailed information it
based its decision upon. Figure 30 shows the output the scheduler
provided to the user.

In Figure 30 we see also values associated to the energy production
in the country of the data center. Models used are not discussed in
this chapter, but can be retrieved from a report [76]. The contribution
of the LAN of the local data center and of the network, occurring on
the right hand side of equation 15, due to the transport of the input
data, turn out to be a considerable part of the total energy consump-
tion. This contribution will be even higher if an Internet connection
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Figure 30: Detailed output from the decision of a scheduler, the left and
right table correspond respectively to the left-hand and right-
hand side of equation 15. Remote processing of the job has a
lower carbon footprint if the connecting network is a light path
network

was chosen, that due to the relative high power consumption of the
routers in the network path. If the user knows how the computation
and its output data scale with the amount of input data, equation 15
can be applied on a range of input data to see how the cost of the
different components scale.

5.5.1.1 Data ranges and complexities

We introduce the complexity of a task where both the computation
time and the output data scale with the input data, and define
Tprocessing = f(x) and Nout = g(x) with x = Nin. For a task with
processing time and output data both scaling linearly with the input
data, O(x), we have f(x) = f1 · x + f0 and g(x) = g1 · x + g0. For
a task exhibiting a processing time scaling quadratically, O(x2), and
output scaling linearly, O(x), we have f(x) = f2 · x2 + f1 · x+ f0 and
g(x) = g1 · x+ g0. In case the amount of input data x is specified or
expressed as a range, i.e., x 2 [X0,X1],X0 > 0, and the complexity
of the job is specified, i.e., f(x) and g(x) are specified, equation 15
will decide whether local or remote processing is preferable for each
x 2 [X0,X1]. With these definitions we can facilitate a user or the
operators of a data center in their choices of task placement with
more flexible parameters. The framework has a web calculator which
allows data ranges as input for the amount of input data of a task and
complexity formulas for the CPU processing time and the amount of
output data as a function of the input data.
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Figure 31: Web calculator for a user or operator to decide whether a task
can be greener performed at a remote data center instead of at
his local data center. Input data is defined as a range, output data
and CPU processing time are defined as complexity formulas on
the input data range (the symbol $0 refers to a value in the input
range).

5.5.2 Web calculator

The web calculator1, facilitates a user to study the output from the
scheduler on submitting a task, and also to survey for which amount
of input data decisions may alter. As an independent tool the user
should supply all the data. Operators of a data center may use data
from a knowledge base. We will introduce the web calculator accord-
ing to the example used so far. Figure 31 shows the web calcula-
tor input page. The amount of input data is expressed as a range,
[5,15] GByte, and the CPU processing time exhibits a linear complex-
ity, O(x), on the amount of input data, 0.012 · x, where x refers to a
value in the input range. The output data also shows a linear complex-
ity, 0.2 · x. So we assume that computation time and amount of output
data is negligible small if no input data is present (f0 = g0 = 0.). For
x = 10 GByte we have CPU time equals 0.012 · 10 = 0.12 core hours
and output data equals 0.2 · 10 = 2 GByte, values used above. In case
a range is defined as input the calculator responds with a plot, Figure
32, and table output for the largest value of the range, see Figure 33.

An operator might use the web calculator to study what happens if
the light path long distance transport connection is not available and
an Internet long distance connection is the only option. If he keeps
all input the same except for the connecting transport network, and
choose Internet long distance instead of light path long distance, he
notices from the output, Figure 34 and 35, that the decision changes.

1 See http://sne.science.uva.nl/bits2energy/index.html
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Figure 32: Graphical output of the web calculator if the input (Figure 31)
has a range define on the input data. The shaded area is due to
an adopted error in the carbon emission value per kWh.

Figure 33: Values corresponding with the maximum value of the input
range [5,15] GByte for web calculator input of Figure 31.

The Internet long distance transport network spoils the greener pro-
cessing advantage of the remote data center.

For quadratic behaviour of the computation time it turns out that
it becomes profitable to do the computation at a cleaner remote data
center for even modest complexity values. This is due to the fact that
the power consumption of computation nodes is relatively high. We
saw that there is a difference if one compares Internet with dedicated
light path connections due to the power consumption of routers in
the former. This becomes clear if we transform equation 15 into a
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Figure 34: Graphical output of the web calculator if the input (Figure 31)
has a range define on the input data, and the connecting transport
network is an Internet long distance network (4 hops).

Figure 35: Values corresponding with the maximum value of the input
range [5,15] GByte for web calculator input(Figure 31), and the
connecting transport network is an Internet long distance net-
work (4 hops).

decision boundary, i.e. substituting an equal sign for the greater sign
in the formula.

If we assume linear complexity for input and computation time,
where we took Nout = g1 · x and CPU processing time is f1 · x, with
x = Nin, the decision boundary becomes a function of g1 and f1,
because x cancels out. The result is then visible in Figure 36, with
two decision boundaries, f1 = 1.43 · 10-2 + 4.24 · 10-3

g1 for Internet
and f1 = 9.56 ·10-3-5.28 ·10-4

g1 for light path. We see three regions
corresponding to different choices of task location. In region 1 the task
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should be performed locally, independently of the type of transport
network; in region 2 the task can be performed remotely provided
that the connection is a light path; in region 3 the task should be done
remotely for both types of transport networks. Values of the example
chosen above, f1 = 0.012 and g1 = 0.2 give a point in region 2, a
different decision for light path and Internet long distance transport
network.

Figure 36: Decision boundaries according to equation 15 for Internet and
light path connections with 4 hops.

5.6 discussion

As we had foreseen in the Introduction the PUE of two data centers,
and even their power sources, cannot be the only guiding criteria in
choosing the location of a computation or of data storage task. In
case the transport network between them is powered by dirtier en-
ergy than both data centers are powered with, the contribution of the
network to the total cost in gr. CO2 for moving data can be significant.
This mostly is the case if the data traverses the Internet, due to the
relatively high power consumption of routers. Light path connections
are preferable over Internet connections, but light path connections
are dedicated connections that require a more complex setup proce-
dure and sometimes might not be available to a user. For large input
data sets and linear behaviour of the computation time on the input
data, it might be better to do the calculation locally, if the connect-
ing network is Internet. The same situation may be reversed in case
the computation time shows a quadratic dependency on the input
data. In that case the contribution of a dirty network becomes less
prominent provided the data produced by the computation is lim-
ited and does not need to be transferred back to the user. Altogether
this means that for realistic large processing, there is not one choice
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that can be made that is “always best” in terms of energy use and
associated emissions.

5.7 conclusions and future work

We have presented in this article a decision framework to allow users
and data center operators to decide where to place an application
in order to minimize the total CO2 emitted in the process. We have
shown that, if one assumes that the two data centers being considered
have the same architecture and internal structure but different PUE,
the network connection between them can play a significant role for
the final selection of the site in which to compute or store data. Our
framework depends not only on the models for the networks, which
can be enhanced if one wishes, but also depends on the contents of
the knowledge base it can draw upon. In the work presented here we
used the energy data published by the EU and data of some Euro-
pean continental data centers. There are improvements we intend to
include in our framework in order to obtain even more realistic car-
bon footprint information. For data centers that are only reachable by
crossing seas, the network model should be enhanced by models of
sea cables. Another aspect connected with the network topology used
in the models is the knowledge of the exact numbers of hops between
two locations. For this, we would like to use a detailed map of the net-
works for different countries. Our first step in this direction will be
to fill the knowledge base with detailed information of the transport
topologies used between higher education and research data centers
in the Netherlands, which are connected by the SURF network[91].

§





6
M A X I M I Z I N G T H E U S E O F A L L O C AT E D
R E S O U R C E S

This Chapter is based on “Software Controlled Virtual Infrastructure”[92].
A software defined internet comprises an IP-tunnel network, software routers
on virtual machines (VMs) and Netapps. The previous chapters described
concepts that allow to construct Netapps that yield virtual internets that fea-
ture localisation and security services on basis of cPUFs as well as optimal
distribution, networking and ecological cost of VMs deployed. This Chap-
ter shows how to use allocated VMs most effectively which benefits their
performance as well as their energy efficiency. In previous chapters Netapps
controlled virtual internets. In this chapter we expand the concept to control
a virtual computing infrastructure: the virtual internet as well as the appli-
cations that execute on the VMs. For the clarity of the publication contained
in this chapter, the Netapp is named there "VI-controller". Amongst others,
the chapter shows that virtual internets are great execution environments
for workflows. An application specific and a general applicable algorithm in
the VI-controller jointly optimize the processing capacity of the workflow.
The Warehouse process is application specific as it addresses, with a specific
algorithm, the functional concern to determine the cost, the number of VMs
and their distribution over cloud data centers. Developers of Warehouse pro-
cesses can use the previous chapter to determine the environmental costs
of a set of VMs in various data centers. The use of the methods in earlier
chapters would allow to determine an optimal virtual internet topology. Sep-
arated from the design of the Warehouse process is the common concern to
use its allocated VMs optimally, that is, to operate the workflow at maximum
throughput. For this we present a generic algorithm. This chapter concludes
the research in this thesis that establishes that virtual internets are practical
execution environments for global scale distributed applications.

6.1 introduction

Being available globally, public cloud data centers provide the pro-
cessing and distribution capacity for virtual machines (VMs) that host
applications that interwork to form a distributed workflow. On that
global scale, the processing performance of VMs [93] alter, as does the
size and nature of the gathered and produced data streams. For exam-
ple, daylight conditions influence the compression of video streams
and the output of recognized features. Hence, to maintain a most ef-
fective use of the available VMs, the application must be scaled and
distributed regularly.

77
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The horizontal scaling mechanism is often available at cloud data
centers. This mechanism replicates VMs, and therefore the applica-
tions they execute, in a certain data center. The horizontal scaling
mechanism is frequently used to adapt the number of webservers
to provide web clients enough quality of service. More complex dis-
tributed applications, such as the data analysis framework Spark[94]
and the streaming-data analysis framework Storm[95] are implemented
as workflow applications. They use the resource manager Yarn[96] to
scale and distribute, at instantiation time, the applications that con-
stitute the workflow. Yarn ignores run-time application performance
indicators that are affected by a change in the nature of data (e.g.,
larger and more complex data packets) and VMs that receive less
CPU time or memory bandwidth. In this way Yarn omits the com-
plexities that run-time scaling of applications introduce, namely that
of gracefully integrating or removing the just amount of applications
in and from the workflow. The designers of a globally distributed
and adaptive content replication network, described in ref.[97], bene-
fitted from the deployment of a virtual network. Their virtual network
overlays telecommunication networks that interconnects their private
cloud infrastructure. The deployment of content replication applica-
tions is straightforward in this virtual network. For example, the vir-
tual network hides the changes in telecommunication links caused by
the activities of software to obtain optimal network latency, capacity
and robustness.

This chapter shows how the construction of a globally distributed
workflow benefits from a Software Controlled Virtual Infrastructure,
SCVI. The SCVI comprises VMs in public cloud data centers and IP-
tunnels that interconnect them. As in the case of the adaptive con-
tent replication network, a Virtual Infrastructure (VI) controller can
construct IP-tunnels that have the same or better performance than
default internet connection [23] and manage their robustness[2]. A
workflow specific Warehouse process in the controller determines,
run time, the number of VMs and their distribution over cloud data
centers. As a response to fluctuating workload and VM performances,
the controller reconfigures the workflow and the IP-tunnel network
to ensure optimal usage of the allocated VMs.

We discuss the following software:

1. parts of the VI controller that warehouses VMs and deploys
them most effectively in a workflow via a generic optimization
algorithm,

2. Sarastro[2] software the VI controller uses to allocate VMs and
to install, on them, router software, IP-tunnels and applications,

3. Pumpkin[98] a distributed, peer-to-peer workflow manager, steered
by the VI controller, and
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Figure 37: The VI-controller (1) controls the life cycle and optimization of
the workflow. Its Warehouse process determines the number of
VMs and the set of data centers from which they are acquired.
The optimization algorithm of the VI-controller ensures effective
use of them. The VI-controller uses Sarastro (2) to allocate and
bootstrap VMs. VMs run Sarastro Agent (3) allowing to setup and
manage an Internet overlay network (4) and router software (5) to
interconnect the VMs. Similarly, each VM contains an instance of
Pumpkin, a peer-to-peer workflow manager (6), to allow the VI-
controller to add, run and remove different applications Ai (7).
The Pumpkin instances together form a virtual workflow man-
ager that constructs and optimizes a workflow between the Ai.

4. VMs that are configured to host workflow applications and that
are managed by the VI controller.

6.2 architecture

Our technology is relevant for the implementation of workflows that
feature horizontal scaling. This requires the externalisation of the
workflow state from the scaled applications. Externalisation of state
prevents the destruction of state information when applications are
removed from the workflow during a scale-down operation. In our
architecture, see Figure 37, state is maintained in the VI-controller
and in the workflow packets. Then the act of scaling and distribution
is essentially the replication and distribution of VMs and the attach-
ment and detachment of applications from the workflow. To generate
the proper network connections, the VI-controller contains the logical
topology, e.g., Figure 38a, that describes how the applications in the
workflow connect to each other. This allows the VI-controller to cre-
ate, via Sarastro, a network of IP-tunnels that connects a set of VMs.
The tunnels and VMs form a virtual infrastructure that overlays In-
ternet and computer hardware. This virtual infrastructure forms the
execution environment of the workflow. The management of details
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of the underlying network and computing environment is left to the
VI-controller and Sarastro. The applications in the workflow merely
experience a routed IP-network, to which instances of applications in
the workflow connect and disconnect. On each VM there is a Pump-
kin instance that follows instructions of the VI-controller to manage
a single active instance of an application in the workflow. Figure 37
reflects this: Aij, the j-th instance of a workflow application Ai is con-
trolled by its Pumpkin instance. As Pumpkin instances abstract Ai to
the VI-controller, the performance of the workflow is optimized on
basis of an abstract performance criterion. This criterion, the time to
process all workflow packets in the input queue of Aij, is determined
by its managing Pumpkin instance and reported by this instance to
the VI-controller.

6.2.1 Sarastro virtual infrastructure factory

On behalf of instructions from the VI-controller, Sarastro[99] instan-
tiates VMs on a designated cloud data center. All VMs are based on
an image on which the Linux OS and Sarastro Agent are configured.
During run-time, the VI-controller uses Sarastro to manipulate the
network of IP-tunnels as well as to manage VMs. Furthermore, on
behalf of the VI-controller, Sarastro terminates VMs.

6.2.2 VMs

Sarastro manages software on VMs via the Sarastro Agent that is
installed as an application. Router, Pumpkin and Ai instances are
placed via this agent on the VM. Furthermore, the VI-controller con-
figures, via the agent, IP-tunnels to pre- and succeeding applications
in the workflow on basis of its logical topology, see for example Fig-
ure 38a. In cases the Pumpkin instance is commanded to replace an
instance of Ai with one of Aj, the tunnels are reconfigured following
the prescription of the workflows logical topology too. Each IP-tunnel
is assigned an IP address and supports IP-broadcasts on the subnet.
As the tunnel interfaces are also registered with the router on the VM,
the IP-tunnels and the routers form a routable subnet, where every
VM is reachable via two or more paths.

6.2.3 Pumpkin workflow manager

Pumpkin[98] [100] is a decentral, peer-to-peer workflow manager. Pump-
kin instances broadcast over the IP-subnet to discover the addition or
removal of preceding and succeeding applications in the workflow.
Following the concept of a distributed data transformation network
(DTN), Pumpkin tags a data packet with a state automaton and marks
its current state to create a workflow packet. A Pumpkin instance that
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receives a workflow packet, instructs its Aij to process it and updates
the automaton. Then the automaton is added to the output data of Aij

and forwarded to an appropriate succeeding application. This contin-
ues until the automaton reaches its termination condition, i.e., until
the workflow is completed for that data packet. Pumpkin instances
implement, per succeeding application, a limiter on the rate packets
are sent. The rate limiter measures and stabilizes the PEij of the suc-
ceeding application, the estimated time this application processes the
workflow packets that are currently stored in its input queue. The
combined effect of the rate limiters is a continuous minimization of
all backlogs. Each Pumpkin instance is also queried for PEij by the
VI-controller that harbours an algorithm to optimize deployment of
allocated VMs. This algorithm determines which Ai to run on each
VM. Pumpkin facilitates the distribution and scaling of Ai. To scale
up Ai with an additional instance, the VI-controller merely has to in-
struct a Pumpkin instance on an unused VM to load Ai. In the case
that, e.g., for cost reasons, the number of VMs has been fixed and all
of them are in use, the VI-controller instructs a Pumpkin instance on
a certain VM to unload its active Aj instance and load one of Ai. In
this case, the increase of capacity of Ai is at the cost of Aj’s capacity.

6.2.4 VI-controller

The Python coded virtual infrastructure (VI) controller [101] creates,
monitors and manipulates virtual infrastructures as well as the work-
flow. The services of Sarastro are used to manage the virtual infras-
tructure. Furthermore, the VI-controller interfaces with each Pump-
kin instance to manipulate the workflow. The VI-controller contains
a purpose specific implementation of a Warehouse process that deter-
mines, at what cost, how many VMs should be acquired at which data
centers. Cost, both financially as environmentally [72], is a reason to
constrain overdimensioning of the workflow. Furthermore, cloud data
centres also limit the number of VMs deployed, e.g., the default max-
imum of Amazon EC2 was 20 VMs at the time of our experiments.
During the run time of the workflow, the numbers and distribution of
VMs can be varied by the Warehouse process. The VMs are started by
the VI-controller, causing amongst others, activation of their Sarastro
Agent and Pumpkin instance. The controller instructs each Sarastro
Agent to connect the VM with IP-tunnels to a VM that will contain
the workflows data-source A1, see Figure38b. Having established a
network in this way, the VI-controller builds, guided by the logical
topology and starting with the data source application A1, the work-
flow, see Figure38c. Each building step includes the activation, via
Pumpkin, of the appropriate Ai instance Ai1 on a VM and the cre-
ation of an IP-tunnel to the preceding application Aj1. The IP-tunnel
between each Ai instance to the ones of the data-source A1, is re-
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moved in case the logical topology the Ai does not have a link to A1.
After the establishment of an IP-tunnel, Pumpkin instances discover
each other as well as the Aij that they manage. Once the initial work-
flow system has been set up, all A1 instances are instructed to start
the injection of data. About 20 seconds after the workflow system
starts executing, all predicted execution times PEi are stable. Then
the VI-controller deploys a generic optimization algorithm to ensure
that the allocated VMs process data most effectively. This results in a
scaled workflow system, see 38d-e.

6.2.5 Generic optimization algorithm

The optimization algorithm operates on non-application-specific in-
formation to achieve a most effective use of the VMs allocated by
the Warehouse process. It requires the identifier ij of the instances
Aij and their predicted execution time PEij. Under governance of the
optimization algorithm, the VI controller changes the number (ni)
of Ai instances in such a way that the average predicted execution
times PEi =

P
j
PEij/ni, for all Ai, are approximately equal. Then

no Ai forms a performance bottleneck, the rate in which packets are
entering the workflow is equal to the rate of processed packets, the
workflow is in free flow.

Basically, the algorithm that determines the values of ni for the
free flow state, works as follows. It first tries to assign an unused VM
to run another instance of the Ai with the lowest PEi. However, if
all VMs already run an Ai, the VI-controller commands an arbitrary
VM from the set of VMs that run an instance of the best performing
Ai to terminate it and run an instance of the worst performing one.
The controller repeats this until the free flow state is achieved. More
precisely, the VI-controller

1. collects the predicted execution times PEij from the Pumpkin
instances.

2. calculates the averages PEi.

3. sets imax to the index i of the maximum PEi. Aimax
is the ap-

plication that currently forms the bottleneck in the workflow.

4. sets imin to the index i of the minimum of PEi for Ai where
ni > 1.

5. configures, in case there is an unused VM, this VM to run an
instance of Aimax

.

6. configures, in case if every VM is used, an arbitrary VM that
runs an instance from the set Aimin

, to run Aimax
.

7. waits for a certain amount of time and then continues at the
first step.
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The VI-controller steers the workflow’s processing capacity towards
the optimum state, a state where the input queues of each Ai are
processed in the same amount of time. In this workflow state the
available VMs are exploited to their maximum effectiveness. If never-
theless the queues are growing in this state, the processing capacity
is insufficient, and vice versa. As the Warehouse process selects the
datacenters at which the VMs are deployed, it determines the geo-
graphical distribution of Ai. The optimization algorithm ensures that
the distributed Ai are balanced in performance globally.

6.2.6 Simulator

Much of the behavior of the optimization algorithm can be studied
via a simulator3. For instance, Figure 38 illustrates the initialization
phase, several stages in the scaling phase and the final equilibrium
state of a simulated workflow system.

By observing various simulated workflows, we recognized that the
topology of a workflow at equilibrium profiles the characteristics of
the data and qualities of the virtual infrastructure. In fact, the actual
workflow topology is defined by the logical workflow topology and
the performance profile, the set of {n1,n2, ...}. Here, ni is the num-
ber of instances of Ai. The graph in Figure38e has {1, 4, 2, 2, 4, 3, 4}
as its performance profile. The performance profile depends on pro-
cessing speed of the Aij, and the nature of the data streams they
operate on. If, for instance, the coding of the workflow application
Ai improves its processing capacity then less VMs are required to
process its workload. The VI-controller would attribute the excess
VMs to other workflow applications. Hence, the performance profile
is changed. Similarly, if the nature of data changes it affects the pro-
cessing speed of the workflow applications Ai and that is reflected in
the performance profile too. The performance profile is a characteris-
tic that fingerprints the workflow process as a whole. Changes in the
performance profile can be used to trigger an action. The workflow
simulator is useful also for other developers that deploy our software.
It allows, amongst others to evaluate specific remedies, e.g., for oscil-
lations or fluctuations in a workflow topology that are caused by the
discrete nature of the optimization algorithm.

6.3 evaluation

A SCVI provides an adaptive execution environment that can be used
to right-scale and distribute, globally, applications. In the case dis-
cussed, the applications form a workflow that is managed by Pump-
kin. Easing the efforts to engineer and operate the workflow is an
architectural concept that allows separation of concerns in the design
phase. During design time, the developers who design the workflow
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Figure 38: Effects of the VI-controller on the scaling of a simulated virtual
infrastructure of a distributed workflow application. (a) Is an
acyclic directed graph, which is the logic workflow topology. (b)
Is the virtual infrastructure topology of IP tunnels and VMs setup
by the VI-controller. Then (c) the controller sets up the initial, non-
scaled, virtual internet topology running an active workflow. This
topology partly reflects the logical workflow topology shown in
(a). (d) Intermediate topology after a few scaling actions. (e) Is the
final equilibrium topology. Application A1 is the data injector.

and develop the Ai, can be others than those who adapt the VI con-
troller to generate, scale and distribute the workflow. During run time
we have taken care, as we will discuss, that the scaling algorithm
of the VI-controller and Pumpkins adaptive mechanisms do not dis-
turb each other. Amongst others, Pumpkin features feed-back mecha-
nisms to adjust rate limiters, to cope with dropped workflow packets
and to deal with the effects of applications entering and leaving the



6.3 Evaluation 85

workflow. To evaluate the practical applicability of the architecture
and possible side effects of interworking adaptive systems, a demon-
strating application is created. The existing and hence independently
developed Twitter filter engine that had served as a demonstrating
application[98] of Pumpkin itself is used for the purpose.

6.3.1 Twitter filter workflow

The Twitter filter workflow is designed to process data from a 25GB
Twitter data set [102]. The workflow is composed of the following
Ai, of which A2, A3, . . . , A5 act as filters:

• A1 Injector - of data in the workflow.

• A2 Language filter - e.g., English.

• A3 Sentiment filter - to categorize tweets into positive and neg-
ative sentiments.

• A4 Topic detection - to match a tweet to a predefined set of
topics.

• A5 Entity recognition - to extract named entities from tweets
such as movie titles, brands, etc.

• A6 Data collector.

The software engineering of the VI-controller of the Twitter filter
workflow profited indeed from the separations of concern. The log-
ical workflow topology that is coded in the VI-controller, is trivial:
A1 outputs to A2, A2 to A3 and so on. There is much performance
variability in the application, and this tests the adaptive mechanisms.
The Ai, for instance, differ in computing resources to process a work-
flow data packet and foremost A2 is computational intensive. Also
the CPU times assigned by data centers to VMs fluctuate. Then, as
the Twitter data themselves differs in composition, their processing
times differ too.

6.3.2 Experiments

Various experiments have been conducted. The most extensive one
allocated VMs from two cloud providers, namely Amazon EC2 and
Brightbox. The Warehouse process obtained five VMs each from the
following data centers: Amazons US West, US East and EU West and
Brightbox’s Zone A. Each VM has 1 virtual CPU and 2 GB of memory.
The VI-controller follows the procedures outlined in Section 6.2 to
setup and scale the workflow.

In this experiment A2, the English Language filter, got finally 10
VM assigned to it. The other five VMs were assigned by the VI-
controller to the other five Ais. This indicates that A2 is by far the
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Figure 39: Figure 39a shows the equilibrium workflow topology with the fol-
lowing applications, A1 (Injector), A2 (Language filter), A3 (Sen-
timent filter), A4 (Topic detection), A5 (Entity recognition), and
A6 (Data collector). Of the eleven available VMs, the optimizer
allocates at least one VM to each Ai and attributes the remaining
ones in such a way to the Ai that the throughput of the workflow
is optimized. Here, these VMs run A2 as this application is by
far the most compute intensive application. Figure 39b shows the
average predicted execution times, PEi, of all workflow applica-
tions A1, . . . ,A6. The execution times of A2 instances dominate
the graph, the ones of the other applications are barely visible.

most compute sensitive application. Furthermore, the experiment re-
vealed a cross-cutting concern. As the input buffer size of A2 was set
too large, the buffers of A2 instances got populated unevenly. To un-
derstand this, suppose that workflow packets are sent at a rate R to a
certain Ai instance, that the Ai instances have an infinite input buffer
size and that they are able to process packets at a rate r, r ⌧ R. The
input buffer of the first instance of Ai, Ai1 is filled at an rate R- r. Af-
ter tc seconds, the cycle time of the scaling mechanism, Ai2 is added
by the VI-controller, then PE(tc)i1 = (R- r)tc/r = (R

r
- 1)tc. At 2tc it
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is decided if Ai3 is added on basis of an evaluation that involves the
average execution time of Ai, PE(2tc)i = (PE(2tc)i1 + PE(2tc)i2)/2.
Now PE(2tc)i1 = (R

r
- 1)2tc and PE(2tc)i2 = (R

r
- 1)tc. PE(2tc)i1

and PE(2tc)i2 are unequal and this reflects their scaling history. Sim-
ilar effects happen for subsequent scaling actions. Hence, in the case
at hand, the average PEi is affected by details of past scaling actions.
This makes comparisons of PEi, for all values of i, hard to interpret
since they do not reflect the contemporary state of the workflow. In
the case of the Twitter filter workflow, where the processing require-
ments of A2 dominates by far those of the other applications, this
still yields a sensible workflow topology. Many other workflow appli-
cations require PEi that does not depend on the history of the work-
flow. To ensure this, the buffers of each Ai instance must be filled or
emptied nearly completely within each scaling cycle, then their av-
erage PEi reflects the current state. By observing the workflow, one
can adjust the input buffer size of the Ai instances for this purpose.
Alternatively, one can adjust tc. To illustrate the appropriate behav-
ior of the scaling mechanism, we discuss a straightforward setup that
deployed eleven VMs in Amazon’s EC2 in Dublin.

6.3.3 Discussion

After the start of the flow processing, the VI-controller waits for ⇡
20 seconds before initiating scaling actions. This allows to minimize
startup effects on the determination of the PEis. Then, the next and
subsequent scaling actions take place at intervals of tc ⇡ 20 seconds.

The result presented in Figure 39 clearly shows that A2, the En-
glish language filter, is by far the most CPU consuming application
in the workflow. In this state the optimization algorithm attributes
most VMs to A2, resulting in an easily understandable final workflow
topology, see Figure 39a. Figure 39b shows the average predicted exe-
cution times PEij for all Aij. Yet only the instances of A2 have on this
scale a noticeable magnitude. Their input buffers have a size of 200
workflow packets and these remain filled until, in this case manually,
A1 is ordered to stop streaming packets to them. Then the PE2j de-
crease. The instances of all other workflow applications process their
input at such speed that their input buffers remain near to empty, and
hence, their PEi1 ⇡ 0, i = 1, 3, 4, 5, 6. The PE2j, see Figure 39b, exhibit
an overshoot at the beginning of the workflow, which is caused by an
interplay between the OSs on the VMs that has to adapt to their new
load, and the rate limiters of A1.

6.4 summary and conclusions

The construction of globally distributed applications is enabled by the
large amount of data centers that, via the internet, offer to run VMs.
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We show that the development of such applications profits from sep-
aration of concerns that are the result of using software controlled
virtual infrastructures (SCVI). With workflows managed by the peer-
to-pear Pumpkin software we illustrate how the SCVI provides a
straightforward to use virtual networking and computing environ-
ment with general applicable mechanisms to add, distribute, scale
and remove applications that run on VMs. We developed a generic
algorithm to deal with the concern to use the available VMs effec-
tively and, consequently, to distribute and scale the workflow over
them. An important cross-cutting concern is identified and remedied.
Namely, to ensure that the controller scales the workflow on infor-
mation reflecting its current state, we maintain small input buffers of
the workflows applications. The workflow is robust, the links to pre-
and successor nodes always guarantee a backup connection between
workflow nodes, whilst running multiple instances of an application
provides robustness against application failures.



7
C O N C L U S I O N S A N D F U T U R E W O R K

7.1 virtual internets

Our research group worked on the concepts of virtual internets since
2005. At that time, virtual internets went by the name ‘wormhole’.
We thought that wormholes were a curious side result of reasoning
developed in the research of programmable networks[1]. An Internet
packet could be sent into it, to resurface somewhere else on the In-
ternet. The designation ‘wormhole’ seemed appropriate. Now we un-
derstand that virtual internets are effective constructs in the creation
of distributed applications. They provide an execution environment
that allows developers to build complex and secure distributed appli-
cations. Virtual internets, as can be inferred from this thesis, do not
have such performance penalties that limits their use to a very select
group of applications. Instead, as the research conducted in Chapters
3 and 4 show, a virtual internet connection has equal or better latency
and transport capacity than the default internet one.

In Strijkers et al. [2] we introduced principles to program the topol-
ogy and life cycle of virtual internets. Virtual routers were generated
in the cloud and connected via encrypted IP-tunnels. This formed
a network that routed IPv4 and IPv6. Such a construct is termed in
this thesis as ‘virtual internet’. Strijkers et al. demonstrated that a sin-
gle person can create a Netapp to set up a globe spanning private
network, with hundreds of routers, featuring self-repair. We subse-
quently demonstrated virtual internets with various other features
at several SuperComputing conferences. At these occasions, the audi-
ence was amazed: globe spanning, hundreds of routers, self-repairing,
looping packets, multicast![P-7, P-8]. People realized that if networks
were software constructs, they could be programmed to do almost
anything. There was also the curiosity how the results could be put
to practical use. “What do the virtual internets deliver extra, what
is the killer app?” the audience was probably thinking. Hence the
people asked politely: “What are the applications?” And there was
always that question: “What is the performance?” Now, 2017, virtual
internet fun, amazement and curiosity has been replaced by insight
and knowledge.

This concluding chapter summarizes the answers to the research
questions, states how the results contribute to the practical uptake of
virtual internets and which novel applications they enable. We dis-
cuss in Figure 40 dynamic access to privacy sensitive information, in
Figure 41 a distributed data sharing environment, in Figure 42 the

89
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organization of the future Internet and in Figure 43 how future end-
systems attach to them.

7.2 answers to research questions

The aim of this thesis is to develop the computer science of the con-
structions that make virtual internets a practical framework to assem-
ble and operate a distributed application. The research question was
formulated in Chapter 1 as:

Can we scale, distribute and adapt virtual internets and em-
bed applications in them to achieve a better than best-effort per-
formance of the distributed application?

Chapter 6 clearly demonstrated that: an auto scaling, self-distributing,
self-repairing distributed system, being itself a serious scientific appli-
cation, that spanned four data centers in two continents.

The first subsidiary research question, see Chapter 2 is the follow-
ing:

1. How can we entangle virtual and physical machines, and
how can we use this entanglement for secure communication
purposes?

For this we developed cPUFs, the security primitives based on the
intrinsic, unclonable, properties of physical devices. cPUFs are used
to guarantee integrity and confidentiality of computing and network-
ing. They are used by security-sensitive computation and communi-
cation processes on systems where all the privileged software (kernel,
hypervisor, etc.) is potentially malicious. With other words, on basis
of cPUFs services one can be sure if, where, and what software was
executed and that secure links are established to the right comput-
ers. cPUFs in combination with virtual internets, are pivotal to secure
data transactions on data.

Chapter 3 answers the following question:

2. Does the optimization of a virtual internet topology result
in a better end-to-end performance compared to the best effort
path over the Internet?

With a certain selection of data centers one determines how a vir-
tual internet overlays the internet and what its geographical topology
is. The data centers, by means of the VMs that run virtual routers of
the virtual internet, define the geographical location of these virtual
routers. Chapter 3 describes a Netapp that select datacenters, and in
them VMs, that act as network nodes and create with them the best
performing virtual internet between end-points. Frequently, the vir-
tual internet even outperformed, with respect to latency, the Internet
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path between these end-points. Virtual internets can be more robust
than the Internet itself. Internet robustness itself is implemented by
services on routers. However, it is not an exception that the owners of
the various subnets switch these off. Moreover, the resilience services
are not always configured properly to allow interworking across do-
mains. Yet, in the uniform environment of the virtual internet it is
much easier to configure the resilience services correctly – it is just
an option that needs to be switched on. In more demanding cases
one can develop, as we demonstrated in [2], a Netapp that changes
the network topology such that there are no articulation vertices and
bridges.

For those situations where obtaining a global VPN via a Telco is not
an option, one might consider to setup virtual internets via selected
data centers as an alternative. Chapter 3 shows that virtual internets
are in more than half of the cases faster than the default Internet path.
Performance of virtual internets is important for their uptake. Hence,
one must answer another performance question: "Is the performance
of software routers comparable to that of hardware routers?" Chapter
4 presented a novel computer science concept for table lookups, in
general, and answered the question relevant for virtual internets:

3. Can we improve the process of routing table lookup such
that it does not suffer from the memory wall?

The answer is yes. The novel concept made the algorithm compu-
tational bound, whereas state of the art table look-up algorithms are
memory bandwidth bound. Phrased differently, state of the art look-
up algorithms suffer from the memory wall. The novel algorithm,
compared to the traditional ones, sparsely uses the computer’s mem-
ory. Instead, the table is entirely mapped on instructions that are
loaded in the CPU. This resulted in a performance gain of a factor
~10. We improved the performance by a factor ~100 by implement-
ing the lookup-algorithm on GPUs. Our novel table look-up method
is generally applicable, hence the results of Chapter 4 is relevant for
software engineering in general and might inspire Computer Science
to follow this new approach to speed up other algorithms.

In Chapter 5 we addressed the question:

4. How can we quantify the CO2 footprint of a virtual inter-
net?

In this chapter we developed a method for estimating CO2 emis-
sion costs for distributed systems. This method can be part of a opti-
mization program that finds the optimum set of resources for a given
cost. The environmental footprint of distributed applications is a com-
mon concern.

The last research question posed was:
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5. How to scale, for a fixed set of VMs, distributed applica-
tions to achieve an optimum performance?

In Chapter 6 we developed a SCVI-controller, which scales the ap-
plications in the workflow to have a uniform processing time. Instru-
mental for the scaling mechanism is that the workflow is embedded
in a virtual infrastructure composed of IP-subnets and VMs. The ef-
fect of operating the SCVI-controller is that the VMs are used most
optimally. One can simply improve the performance by adding new
VMs, as the controller automatically reconfigures the workflow over
all VMs.

7.3 reflection on the main research question

Let us revisit the main research question. This question refers to the
engineering of a sizable distributed application. From a globally dis-
tributed set of datacenters there is a sheer limitless amount of re-
sources available (VMs). Software, implementing a basic adaptive
method to instantiate, distribute and scale the application must in-
clude and repeat the following steps:

1. Select data centers

2. Obtain the amount of VMs that is a compromise between per-
formance requirements and usage cost, a.o., the environmental
footprint calculated via the method of Chapter 5.

3. Use the method of Chapter 3 to create optimal performing vir-
tual internet connections between VMs.

4. Execute the SCVI-controller, described in Chapter 6, to roll out,
optimize and redistribute the application.

Developers of secure applications will likely modify these steps,
e.g., to include VMs with support for PUFs. They can follow the
methods described in Chapter 2 to enable location based services
and proof of execution. For virtual internet topologies where high
throughput is important, one has the option to run software routers
that implement the methods described in Chapter 4, or even select
VMs that offer access to GPUs. Given the above summary of this
thesis achievements this motivates the “yes” on the overall research
question:

Can we scale, distribute and adapt virtual internets and em-
bed applications in them to achieve a better than best-effort per-
formance of the distributed application?

There is also a ”yes” from a more elevated, a more scientific point
of view and therefore we reflect on the issue of separation of concerns
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(SoC). SoC simplifies the construction of the distributed applications
that the main research question refers to. SoC, caused by the deploy-
ment of a distributed application on VMs connected by a virtual in-
ternet, permits application developers to concentrate on functional
requirements; software that is specific to the application. SoC allow
another group of developers, system engineers, to create software, Ne-
tapps, that distribute and optimize the virtual infrastructure of VMs,
IP-tunnels and the embedded applications. In the case described in
Chapter 6, only minor interactions between those groups of engineers
is required to create a global, adaptive workflow.

Figure 40: A mock-up of an augmented reality application that interworks
with Netapps that control the complex organization of virtual in-
ternets that support autonomous driving. The application shows
a local virtual internet that connects applications on the car with
those on the lampposts. Here, Netapps dynamically govern the
connections (green dashed lines) between the active components,
e.g., blue bordered car and green lampposts, and passive ones,
e.g., the orange lamppost. On one lamppost the Netapp is in-
dicated by the KPN logo and it collaborates with a navigation
application, depicted by the TomTom logo. The two applications
have separated concerns. This separation of concerns allows the
construction of complex software. For instance, the navigation
application can instruct the KPN Netapp to extent the virtual in-
ternet to the orange and then to the red lamppost. In the same
order the KPN Netapp and the navigation application is copied
there, whilst deleting the ones passed. Netapps can dynamically
manage access to virtual internets and hence to data accessible
via these. This is important, as for instance the right to access
private data might change due to accidents.

The SCVI-controller in Chapter 6 is an implementation example
of the management of a non-functional, execution quality require-
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!h

Figure 41: A distributed data sharing environment, a sandbox, on basis
of an virtual internet. We envision countless instances of such
sandboxes to collaborate and form the foundations of a digital
transformed society. Chapter 6 showed that Netapps can gener-
ate and run-time modify distributed workflows, including those
that run sandboxes. The sandboxes are accessible via a service
access point (SAP). In this case the SAP is implemented on basis
of a webserver, an enterprise service bus adapter would be ap-
propriate in business environments. Applications A1,A2, . . . ,An

are programs that provide auxiliary services. The environment
ensures that data is shared only to programs P : P1,P2, ...,Pn. Cer-
tification of these Ps forms the basis of a mechanism to prevent
the use of malicious software. The Pis process data on behalf of
several companies, e.g., to bid on the fulfilment of a trade request.
Furthermore, the correct, e.g. law-respecting, behavior of the Ps
is enforced by additional software eP that runs on the same VM
as the programs P. The Pumpkin software described in Chapter 6
is an example of such eP. The sandbox blocks unwanted output
of the Ps. Safety is based on the sandbox, its short lifespan, the
obscurity of its locations, cPUFs, encryption, and programs that
actively monitor security and adapt the virtual internet if needed.
The environment uses cPUFs and the methods of Chapter 2 to
certify execution of Ps.

ment. This requirement, the optimal use of VMs, establishes a free
flow state of the workflow and is achieved by horizontal scaling and
distribution of applications in the workflow. The warehouse process
described in that chapter implements a functional, evolution qual-
ity concern. The warehouse process determines the number of VMs
needed at a certain moment. The algorithms to evolve the network
are described in Chapter 3), algorithms that calculate the CO2 cost of
execution in Chapter 5.
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7.4 outlook and future work

Virtual internets that are researched in this thesis make scaling and
distribution of applications practical. Virtual internets are generated
for each set of collaborating applications. With more and more on-
line devices and appliances, virtual internets will be extended to ever
more locations. Virtual internets can be configured as regular Internet
subnets. This means that they are either connected to the Internet, to
other virtual internets, or both. The application described in Figure 40
uses real and virtual Internets. Virtual internets provide a distributed
system technology to implement a most crucial service, "the killer
app" that we mentioned earlier: a distributed sandbox, the safe way
to share data. Sharing data is basic for most transactions in the digital
transformed society. Virtual internets allow control over data access
and the set of applications that is allowed to operate on the data, see
Figure 41. This concept avoids direct transfer of data between compa-
nies, omitting all associated pitfalls. The ability to share data in a safe
way is relevant for future machines. These machines are comprised of
multiple "smart" parts. Software controls the behavior of these parts,
harmonizing their actions. Yet, there are situations where the com-
plexity of these parts demands that their manufacturers control them
via the Internet. Hence, the smart part has to be online, whilst the
sandbox guarantees that only data from certified applications is ex-
changed. Here too, the construction shown in Figure 42 serves as a
base concept with which ICT of a smart machine is designed.

Our work showed the concepts with which virtual internets pro-
vide robust, secure, and well performing execution environments,
in fact distributed sandboxes, for distributed applications. Applica-
tions that form the essence of a digital transformed society: smart
machines, online shopping, government and bank applications. Yet,
the transactions these applications perform must comply to law and
other regulations, e.g., a digital market should not be a black market.
Future work is needed to embed law and rule compliance in these
sandboxes, and to re-enforce them.

Finally, Figure 42 and 43 show how an end-user is connected via
virtual internets to virtual internets that connect distributed applica-
tions. The figures reflect the future architecture of the Internet. When
Bill Gates said "The internet is becoming the town square for the
global village of tomorrow", we know that virtual internets will fulfil
that prophecy. In future, virtual internets are subnets that outnumber
their physical counter parts, by far.

§



96 7 conclusions and future work

A
vi

si
on

of
th

e
fu

tu
re

in
te

rn
et

th
at

in
cl

ud
es

vi
rt

ua
li

nt
er

ne
ts

ub
ne

ts
.M

os
to

ft
he

In
te

rn
et

su
bn

et
s

re
si

de
in

th
e

cl
ou

d.
Th

is
th

es
is

sh
ow

s
th

at
vi

rt
ua

li
nt

er
ne

ts
pr

ov
id

es
a

ve
ry

fle
xi

bl
e,

ve
rs

at
ile

an
d

se
cu

re
en

vi
ro

nm
en

tt
o

cr
ea

te
di

st
ri

bu
te

d
in

te
rn

et
ap

pl
ic

at
io

ns
.

c

d

e
f

g

h

In
te
rn
et

i
j

k

Fi
gu

re
42

C 1
S 1

C 2

C

ro
ut

er

cl
ie

nt

se
rv

er

se
rv

er
 O

S

S 2

cl
ie

nt
 O

S

S

vi
rt

ua
l i

nt
er

ne
t

to
 c

lo
ud

S 3
S 4

①

②
②

e
e

Fi
gu

re
43

Th
e

pe
rs

on
al

co
m

pu
te

r
1�

us
es

m
ul

tip
le

IP
-t

un
ne

ls
(c

ol
or

ed
lin

es
)

2�
to

co
nn

ec
te

d
to

vi
rt

ua
l

ro
ut

er
s

3�
.

Th
es

e
ro

ut
er

s
ar

e
pa

rt
of

vi
rt

ua
li

nt
er

ne
ts

4�
in

w
hi

ch
di

st
ri

bu
te

d
ap

pl
ic

at
io

ns
5�

ar
e

si
tu

at
ed

.
Th

es
e

vi
rt

ua
l

in
te

rn
et

s
do

no
t

ne
ce

ss
ar

ily
ha

ve
to

fo
llo

w
th

e
sa

m
e

na
tio

na
li

nt
er

ne
t
6�

to
po

lo
gy

.F
or

sa
fe

ty
re

as
on

s
so

m
e

of
th

e
vi

rt
ua

l
in

te
rn

et
s

ar
e

no
t

ac
ce

ss
ib

le
fr

om
th

e
in

te
r-

ne
t
7�

.W
he

n
a

co
nn

ec
te

d
vi

tu
al

in
te

rn
et

is
at

ta
ck

ed
,o

ne
m

ig
ht

di
sc

on
ne

ct
it

fr
om

th
e

re
st

of
th

e
in

te
rn

et
8�

.T
o

in
cr

ea
se

se
cu

-
ri

ty
,o

ne
is

ol
at

es
tr

af
fic

an
d

pr
ov

id
e

a
st

ra
ig

ht
fo

rw
ar

d
ne

tw
or

k
st

ru
ct

ur
e

th
at

ea
se

s
th

e
fo

re
ns

ic
s

of
in

ci
de

nt
s.

Th
er

ef
or

e,
vi

rt
ua

l
in

te
rn

et
s

ar
e

m
ap

pe
d

on
O

SI
la

ye
r

3
tu

nn
el

s
an

d,
w

ith
SD

N
,o

n
la

ye
r

2
po

in
t-

to
-p

oi
nt

co
nn

ec
tio

ns
.M

os
t

of
th

e
na

tio
ns

In
te

rn
et

9�
is

m
ov

ed
in

to
th

e
cl

ou
d.

M
ul

tip
le

,i
n

th
is

ca
se

tw
o,

vi
rt

ua
li

nt
er

ne
ts

ex
te

nd
fr

om
th

e
cl

ou
d

in
to

th
e

en
d-

us
er

s
eq

ui
pm

en
t.

Th
e

pi
ct

ur
e

sh
ow

s
a

m
ul

ti-
co

re
C

PU
1�

on
w

hi
ch

m
ul

tip
le

se
rv

ic
e

pr
ov

id
er

s
2�

ha
ve

in
st

an
ti-

at
ed

vi
rt

ua
li

nt
er

ne
ts

3�
co

nn
ec

tin
g

an
on

-C
PU

se
rv

er
fa

rm
th

at
ru

ns
V

M
s

co
nt

ai
ni

ng
se

rv
ic

es
.T

hi
s

st
ru

ct
ur

e
se

rv
es

as
a

sa
nd

bo
x

fo
rt

he
se

rv
ic

es
.F

ur
th

er
m

or
e,

th
e

se
rv

ic
e

pr
ov

id
er

s
ha

ve
in

st
an

ti-
at

ed
on

th
e

C
PU

fo
r

ea
ch

sa
nd

bo
x

an
ot

he
r

V
M

co
nt

ai
ni

ng
cl

ie
nt

so
ft

w
ar

e
to

ac
ce

ss
th

es
e

se
rv

ic
es

.T
he

cl
ie

nt
so

ft
w

ar
e

al
so

al
lo

w
s,

if
pe

rm
itt

ed
,i

nt
er

ac
tio

ns
w

ith
pe

ri
ph

er
al

s,
su

ch
as

a
ke

yb
oa

rd
.

In
th

is
en

d-
sy

st
em

as
w

el
l

as
in

th
e

cl
ou

d,
vi

rt
ua

l
in

te
rn

et
s

ar
e

is
ol

at
ed

,m
ak

in
g

th
em

ve
ry

ha
rd

to
at

ta
ck

,e
.g

.,
fr

om
th

e
In

te
rn

et
.



B I B L I O G R A P H Y

[1] R. J. Meijer, R. J. Strijkers, L. Gommans, and C. De Laat, “User
programmable virtualized networks,” in e-Science and Grid Com-
puting, 2006. e-Science’06. Second IEEE International Conference on.
IEEE, 2006, pp. 43–43.

[2] R. Strijkers, M. X. Makkes, C. de Laat, and R. J. Meijer, “Internet
factories: Creating application-specific networks on-demand,”
Computer Networks, vol. 68, pp. 187–198, 2014.

[3] R. Strijkers, L. Muller, M. Cristea, R. Belleman, C. De Laat,
P. Sloot, and R. J. Meijer, “Interactive control over a pro-
grammable computer network using a multi-touch surface,”
Computational Science–ICCS 2009, pp. 719–728, 2009.
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S U M M A RY

This dissertation concludes that virtual internets are instrumental to
the organization of globally distributed applications. In essence, a vir-
tual internet comprises emulated internet subnets as well as emulated
computer hardware. The emulated hardware runs the operating sys-
tems, software that implements the distributed application as well as
network software, e.g., routers. The emulation of subnetworks is im-
plemented via a set of IP-tunnels. Software called virtual machines
(VM) emulate computer hardware. Currently, such emulations work
very well and are deployed on large scale by companies for all kinds
of purposes. Most software designed to use the Internet will operate
with virtual internets too.

Virtual internets do have a geographical distribution. The distribu-
tion is determined by the geographical location of its VMs that can
run on computers in data centers all over the world. With software
one can manipulate the VMs and therefore also the software they ex-
ecute. For instance, one can halt a VM and copy it entirely to another
(hardware) computer on another location and continue processing.
Such manipulations are used in this thesis to scale and distribute the
applications.

Since Meijer et al. [1] the existence of virtual internets is known
and since the SuperComputing demonstration [P-5] we knew how to
generate them in large numbers and on large scale – we created [2] a
163-node virtual internet spanning the world. We also knew that the
main application of virtual internet is to support distributed applica-
tions. Yet, at the beginning of the thesis research, essential functions
for a practical deployment of virtual internets were missing. Concepts
for security, optimal performance, distribution, CO2 footprint, and
scaling of virtual internets were not developed. To find them was the
purpose of our research.

The inherent security of virtual internets is based on their isola-
tion. They basically extent the insight of a VM being a sandbox to
the insight that a set of VMs connected by a virtual internet forms
a distributed sandbox. Only those engineers who have instantiated
the virtual internet, know where it is, how to access it and can create
the ability to transfer data from virtual internet to the internet and
vice versa. To facilitate the most security-sensitive computation and
communication processes on systems where all the privileged soft-
ware (kernel, hypervisor, etc.) is potentially malicious, we developed
the concept of controlled Physical Unclonable Functions (cPUFs). The
concept describes a set of security primitives based on the intrinsic,
unclonable, properties of physical devices, a kind of a device finger-
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print. cPUFs are used to guarantee the integrity and confidentiality of
computing and networking. For example, to give processes, bypass-
ing the kernel, exclusive access to encrypted parts of memory. Via
cPUFs one can be sure if, on which CPU, and what software has been
executed in the virtual internet and that IP-tunnels are established to
the right computers.

The use the virtual internets should not inflict performance penal-
ties as that would limit their applicability. We showed that virtual
internets links have a performance better or at least equal as the de-
fault internet path. Our research demonstrated software that, by trial
and error, placed virtual routers in several data centers, connected
them by IP-tunnels and found the best performing routes. The perfor-
mance was in about half of the cases comparable to that of the default
internet connection. In the other cases, the IP-tunnel network outper-
formed it. We also designed a novel routing-table lookup algorithm
for software routers. Essentially the algorithm maps the table on as-
sembler code in a CPU or GPU. This omits much of the relatively
slow memory access, and that discriminates or algorithm from the
other table lookup algorithms. In the case studied the performance
improved by a factor ~10. For GPU’s this resulted in a performance
gain of almost a factor ~100. As table lookups are part of many com-
puter programs, the significance of our novel lookup method extends
to other software.

The virtual internet concept allows to develop software that gener-
ates a large, in terms of computer and network resources, distributed
application. An issue in the deployment of such applications is the
cost of execution. We have focused on an ecological cost, namely CO2

emission. Combining details found in literature, we created and pub-
lished an extensive model to compute this cost. We have shown how
one calculates, for a desired cost, the maximum number of VMs on
which to scale and distribute an application.

We devised an algorithm that, for a given maximum number of
VMs, scaled the applications in a workflow to achieve free flow state
of the workflow. With the free flow optimization criterion, all work-
flow applications process data in the same amount of time. That
means that input queues in any application of the workflow do not
grow, the resources are used most efficiently. As a side effect of this al-
gorithm, the optimum geographical distribution is also achieved. Be-
cause of the scaling actions of the optimizing algorithm, the topology
is sensitive to the relative performance of the instantiated workflow
applications. Therefore, the topology of the workflow reflects prop-
erties of input data and processing speed of applications. Topology
changes can be used to detect changes in these properties.

With virtual internets one can create a sandbox environment that
minimizes the risk of abuse of shared data. Virtual internets would
allow, for instance, to monitor and control parts of a complex ma-
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chine by their manufactures whilst excluding all other operations on
the data – e.g., to copy data to another location. Essential for this
feature is that virtual internets can be used to enforce that data is
shared only with a selected set of programs. Programs that can be
certified to have no side effects. As the data exchange with the vir-
tual internet is tightly controlled, data produced by any undesired
activity of the programs remains confined to the virtual internet. One
can deploy cPUF technologies to add pre-and post-conditions to the
processing of data, e.g., a digital proof the execution of a program
and check if the execution takes place on the specified CPU. Other
software described in this thesis can scale and distribute this sandbox
environment. Hence this thesis contributed significantly to a crucial
Internet of Things issue: “How to share data safely”!

One can imagine to set up an IP tunnel from a laptop to each vir-
tual internet that contains the services a person uses. For instance, a
virtual internet for email, navigation, and for each banking and so-
cial media application. Then a glimpse for the future organization of
the Internet emerges: countless virtual internets, probably called vir-
tual subnetworks by network engineers, in cloud data centers. They
are interconnected with end-systems, PCs, and other virtual internets
via IP-tunnels. Most of the IP-tunnels reside in the cloud, some are
connected via routers to the Internet that we know off now. Such a
fine-grained subnet organization makes the scope of a security inci-
dent rather small, and is better tracked to its source. Hence we dare
to forecast: “in future most of the Internet will reside in the cloud!”

§



S A M E N VAT T I N G

Dit proefschrift concludeert dat virtuele internetten instrumenteel zijn
voor de organisatie van gedistribueerde applicaties. Een virtueel in-
ternet bestaat eigenlijk uit één of meer geëmuleerde internet subnet-
ten en geëmuleerde computer hardware. Op de geëmuleerde hard-
ware draaien besturingssystemen. Die besturingssystemen worden
niet alleen gebruikt om de gedistribueerde applicatie zélf te execute-
ren maar ook netwerksoftware, bijvoorbeeld routers. De emulatie van
subnetwerken wordt geïmplementeerd met behulp van IP-tunnels.
Computer hardware wordt geëmuleerd door software dat bekend is
onder de noemer van virtuele machines (VM). Op dit moment is de
kwaliteit van de emulatie hoog en worden VMs op grote schaal toege-
past door bedrijven. Daardoor zijn bijna alle applicaties die voor het
internet ontwikkeld zijn óók te gebruiken in virtuele internetten.

Virtuele internetten hebben een geografische spreiding dat bepaald
wordt door de geografische ligging van de VMs. Die VMs kunnen
draaien op computers in datacentra. Die datacentra bevinden zich
over de hele wereld. Middels software kan men VMs manipuleren, en
daarmee ook de software die zij executeren. Zo kan men een VM pau-
zeren, kopiëren en deze op een geheel andere (hardware) computer
op een andere locatie weer verder executeren. Dergelijke manipula-
ties wordt in dit proefschrift gebruikt om gedistribueerde applicaties
op te schalen en te distribueren.

Sinds Meijer et. al. [1] kennen we het bestaan van virtuele internet-
ten en sinds de SuperComputing [P-5] demonstratie weten we hoe we
deze in grote aantallen en op grote schaal kunnen genereren - hon-
derden netwerkelementen verspreid over de hele wereld. We wisten
ook dat in de implementatie van gedistribueerd applicaties de belang-
rijkste toepassing van virtuele internetten zou liggen. Maar essentiële
functies voor zulke toepassingen ontbraken aan het begin van mijn
onderzoek. Concepten voor beveiliging, optimale prestaties, distribu-
tie, kosten en het opschalen van virtuele internetten waren toen nog
niet ontwikkeld. Het doel van mijn onderzoek was om deze concep-
ten te vinden.

De inherente veiligheid van de virtuele internetten is gebaseerd op
hun isolement. Alleen die ingenieurs die de virtuele internetten ge-
construeerd hebben, weten waar ze zijn, hoe je data uitwisseling er-
mee regelt en hoe software de diensten van een virtueel internet kan
aanspreken. Maar toch kan het zo zijn dat VM-software, besturings-
systemen, softwarebibliotheken en communicatieprocessen zélf niet
volledig veilig zijn. Daarom hebben wij het concept ontwikkeld van
controlled Physical Unclonable Functies (cPUFs). Het concept baseert
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securityprimitieven op intrinsieke, niet kopieerbare, eigenschappen
van fysieke apparaten, dus op een soort vingerafdruk van de appara-
tuur. cPUFs worden gebruikt om de integriteit en vertrouwelijkheid
van computers en netwerken te garanderen, bijvoorbeeld door proces-
sen, buiten het besturingssysteem om, exclusief toegang te geven tot
versleutelde geheugengebieden. Verder kan men op basis van cPUFs
bewijzen genereren dat software op een specifieke CPU uitgevoerd is
en dat IP-tunnels met de juiste computers verbonden zijn.

De performance van virtuele internetten moet adequaat voor het
gros van de denkbare toepassingen zijn. In ons onderzoek is software
geconstrueerd dat een optimaal presterend virtuele internet pad kan
maken. Die performance was gelijk en in de helft van de gevallen
beter dan de normale Internetverbinding. Om dat voor elkaar te krij-
gen plaatste de software in diverse datacentra virtuele routers, ver-
bond deze onderling met IP-tunnels en selecteerde de best preste-
rende route. Ook hebben we een nieuwe methode voor het zoeken in
routeertabellen uitgevonden. De traditionele methode doorzoekt de
tabel die in het computergeheugen is geplaatst. De nieuwe methode
beeldt de tabel af op assembler code in CPUs en GPUs. Wij vergele-
ken de prestaties van de nieuwe methode met die van de traditionele.
De nieuwe methode leverde een versnelling van een factor ~10 voor
CPUs en een factor ~100 voor GPUs. Deze tabel-doorzoek-methode
is van groot belang, het doorzoeken tabellen vindt in vrijwel alle soft-
ware plaats.

Het opschalen van een virtueel internet wordt door software ge-
stuurd. Het resultaat kan een grote, in termen van benutte hoeveel-
heden fysieke computer- en netwerkapparatuur, gedistribueerde ap-
plicatie zijn, met navenante kosten. Wij hebben een inschatting ge-
maakt van CO2 emissie, een ecologische kostenfactor. Deze speelt te-
genwoordig een rol in de bepaling van de omvang en distributie van
een applicatie. Bij grootschalige applicaties maakt het namelijk wél
uit hoe de energiemix van diverse datacenters zijn, hoe deze en met
welke netwerkapparatuur en bekabeling zij onderling verbonden zijn,
hoe de efficiency van het gebruik van computers is, etc. We hebben
daarom, op basis van een literatuurstudie, een model gepubliceerd
dat de CO2 kosten van virtuele internetten berekent. Dat stelt ons
in staat om te bepalen hoeveel virtuele machines, en waar, we tegen
welke kosten gebruiken gaan.

Vervolgens is een algoritme gemaakt en beproefd dat ter beschik-
king staande VMs optimaal gebruikt. Het algoritme streeft naar free
flow tussen de onderdelen van de gedistribueerde applicatie. In de
free flow toestand verwerken alle applicatieonderdelen de aangebo-
den data even snel. Mocht een onderdeel van de applicatie te lang-
zaam werken, b.v. omdat de aard of hoeveelheid van de aangeboden
data verandert, zorgt het algoritme voor een extra VM en een juiste
aansluiting in de topologie van het netwerk in het virtuele internet.
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Deze VM is óf ongebruikt óf wordt van een ander onderdeel van
de applicatie weggenomen. Daarom weerspiegelt de topologie van
de gedistribueerde applicatie, eigenschappen van de invoergegevens
en verwerkingssnelheid van applicatie onderdelen. De topologische
verandering kunnen gebruikt worden om verandering in deze eigen-
schappen waar te nemen. Een plezierig neveneffect van het free-flow
algoritme is dat de optimale geografische spreiding ook wordt be-
reikt.

Met virtuele internetten kan men een omgeving creëren dat het ri-
sico van misbruik van gedeelde data minimaliseert. Met behulp van
virtuele internetten kan een leverancier zijn machines besturen in een
fabriek. Van belang voor de fabriek is dat hiermee geen bedrijfsge-
heimen weglekken. In dit geval zal dan een virtueel internet alleen
geauthentiseerde applicaties verbinden. Een virtueel internet isoleert
namelijk dataverkeer van het Internet. De uitwisseling van gegevens
door middel van virtuele internetten kan uitstekend worden gecon-
troleerd. Data dat toch door ongewenste software-activiteit geprodu-
ceerd wordt, blijft opgesloten in het virtuele internet. Met cPUF tech-
nologie kan men het verwerken van data van pre-en postcondities
voorzien: bv een digitaal bewijs dat een programma is uitgevoerd op
een specifieke CPU. Andere software, beschreven in dit proefschrift,
kan deze data-deel-omgeving omgeving schalen en distribueren. Van-
daar dat dit proefschrift aanzienlijk bijdraagt aan een essentieel Inter-
net of Things issue: "Hoe kunnen we gegevens veilig delen"!

Men zou zich kunnen voorstellen dat elke dienst die iemand ge-
bruikt, zoals email, navigatie, online banking en social media, appart
kan in een virtueel internet beschikbaar wordt gesteld en appart met
een IP-tunnel verbonden wordt met zijn laptop. Men ziet dan een
glimp van de toekomstige organisatie van het Internet: talloze virtu-
ele internetten in cloud datacenters, die waarschijnlijk door de netwer-
kingenieur virtuele subnetten worden genoemd. Zij worden verbon-
den door IP-tunnels met allerlei gecomputeriseerde apparaten, PCs
en andere virtuele internetten. Sommige IP-tunnels staan via routers
in verbinding met het Internet dat we nu kennen. De fijnmazige sub-
net structuur zorgt dat beveiligingsincidenten veel kleinere gevolgen
hebben dan tegenwoordig. De bron daarvan kan om dezelfde reden
beter worden getraceerd. Vandaar dat we de volgende voorspelling
durven te maken: “in de toekomst zal het grootste deel van het inter-
net zich in de cloud bevinden!”
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