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Samenvatting

We leven in een informatiemaatschappij die wordt bijeengehouden door het internet. Het 
internet begon als wetenschappelijk experiment en is uitgegroeid tot een enorme comput-
erinfrastructuur waarin mensen en objecten informatie uitwisselen, maar de ongekende 
snelheid waarmee het Internet zich ontwikkelt is een probleem. Technologieën komen en 
gaan met een snelheid die nauwelijks is bij te houden. Denk aan het verschil tussen de 
eerste mobiele telefoon en een huidige mobiele telefoons. Mijn huidige mobiele telefoon 
heeft op Swisscom’s 4G netwerk een bijna 7000 keer snellere verbinding met het inter-
net dan mijn eerste 14k4 modem verbinding zo’n twintig jaar geleden. Ook voor de ver-
dere ontwikkeling van de informatiemaatschappij is het internet cruciaal: slimme steden, 
onderling communicerende auto’s en cyber-physical systemen draaien om communicatie 
met alles en iedereen.
	 Het gevolg is echter dat computernetwerken in toenemende mate complexer worden en 
moeilijker te innoveren. Met elke nieuwe ontwikkeling nemen de mogelijke combinaties en 
interacties met bestaande technologieën en apparatuur toe. Op de lange termijn is dat niet 
meer vol te houden. Verder is het inefficiënt en te duur om voor elke nieuwe technologie of 
nieuwe functie een nieuw apparaat te moeten kopen en dat handmatig te moeten inrichten. 
Er is een innovatiemodel nodig waarmee technologieën kunnen en geïntroduceerd, maar 
ook kunnen worden uitgezet zonder dat we daarvoor de hardware moeten vervangen. 
	 Deze thesis presenteert de concepten voor een innovatiemodel gebaseerd op software. In 
plaats van voor elke technologie nieuwe apparaten te introduceren worden netwerktechnol-
ogieën geïmplementeerd als applicatiesoftware. Ook de uitrol en beheer van de technologie 
wordt beschreven door applicatiesoftware. In dit model zijn telecomnetwerken niets anders 
dan applicaties die draaien op een infrastructuur van servers. Voor informatica leidt het 
tot een nieuwe researchvraag: hoe kan op een gestructureerde manier netwerktechnologie 
worden ontwikkeld in applicatiesoftware?
	 Het resultaat van mijn onderzoek kan worden samengevat in het concept, en daarom ook 
de titel van mijn thesis, Internet Factories. Dit concept beschrijft de stappen om Netapps 
te ontwikkelen en een software platform, de Internet Factory, om Netapps uit te voeren. 
Een Netapp is een beschrijving van de werking van een netwerk in de vorm van een com-
puterprogramma. Op basis van de Netapp en parameters produceert een Internet Factory 

vi



vii

een op zichzelf staand netwerk en de bijhorende structuren voor het beheer. Een voordeel 
van computerprogramma’s is dat een software bibliotheken en ontwikkelpatronen kunnen 
worden gebruikt om de ontwikkeling van nieuwe technologieën te versnellen met hogere 
betrouwbaarheid. Experimenten met een Internet Factory proof of concept, Sarastro, laten 
zien dat een netwerk in essentie niets anders is dan een manifestatie van een Netapp. De 
contributie van deze thesis kan dan ook worden samengevat als: de Netapp is het netwerk.
	 Het werk in deze thesis is volbracht op een moment waarin de telecom industrie be-
gint netwerktechnologie en diensten los te koppelen van onderliggende infrastructuur en 
daarom zijn juist nu de resultaten uit mijn thesis relevant. Ik heb in mijn promotie de 
structurele basis gelegd voor het ontwikkelen van netwerken in de vorm van applicatiesoft-
ware. Opkomende technologieën in de telecom industrie zoals Software Defined Networks 
(SDN) en Network Function Virtualization (NFV) zijn daarvan de voorbode. Mijn werk laat 
de bredere context zien waarin software-gebaseerde netwerken kunnen worden toegepast 
en dat onderzoek in computernetwerken zich zal verplaatsen naar de applicatie domein. 
Dat is de basis voor een nieuw informaticaprobleem: welke structuren en mechanismen 
zijn nodig om Netapps te maken die kunnen schalen tot de grootte van het internet? Met 
andere woorden, wat zijn de limieten van de programmeerbaarheid en beheersbaarheid 
van Netapps?
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Summary

We live in an information-centric society kept together by the Internet. From its humble 
beginnings as a scientific experiment, the Internet is becoming an immense data process-
ing infrastructure in which people and manmade objects exchange information. However, 
the incredible pace at which the Internet is developing is a problem. The telecom industry 
can hardly catch up with the speed of technological developments. Think of the difference 
between the first mobile phones and todays smart phones. My current smart phone on 
Swisscom’s 4G network offers almost 7000 times more bandwidth to the Internet than 
my first 14k4 modem connection around twenty years ago. Also for the realization of smart 
cities, connected cars, and other cyber-physical systems the Internet plays a crucial role, as 
these developments will interconnect everyone and everything. 
	 The consequence is that computer networks are becoming increasingly complex and diffi-
cult to innovate. With each new technology and development the number of combinations 
and interactions with existing technologies and devices only increases. This is unsustain-
able in the long run. It is inefficient and expensive to introduce technology as a package of 
hardware and software, which have to be embedded in existing systems often in an appli-
cation-specific manner. A new innovation model is required in which hardware, software, 
and services are decoupled.
	 This thesis presents the concepts for a sustainable innovation model for computer net-
works based on software. Instead of introducing devices implementing new network tech-
nologies, network technologies are implemented in application software. Consequently, 
telecommunication networks and services are simply applications running on a networked 
infrastructure of servers and a new network technology is simply the creation of an applica-
tion program. This is a new avenue of research for computer science that has not been given 
attention yet: how to create a methodical process for programming computer networks 
from application programs?
	 This thesis contributes a novel concept for solving the presented research problem, which is 
named Internet factories. The Internet factories concept describes the steps to create Netapps 
and the software platform, the Internet factory, to allow its execution. A Netapp is a de-
scription of the behavior of a network in all its aspects in the form of a computer program. 
An Internet factory uses the Netapp and additional input parameters to manufacture and 
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deploy application-specific Internets including the mechanisms for its operation. A major 
advantage of this approach is that developers of Netapps can use standardized components, 
common patterns, and software libraries for the creation of Netapps and profit of higher 
reliability and faster development times for new network technologies. Experiments with 
a proof of concept, called Sarastro, show that in essence the network is just a manifestation 
of the Netapp. Therefore, the contribution of Internet Factories can also be summarized as: 
the Netapp is the network.
	 The Internet Factories concept comes just in time while the telecommunication industry 
is becoming aware of the emerging need for mass customization and complete unbun-
dling of network services. In my thesis, I have created a structural basis for the development 
of computer networks in application software. Upcoming technologies, such as Network 
Function Virtualization (NFV), Software Defined Networks (SDN), and Openflow, show 
that the vision of this thesis is becoming reality. My work also shows that the research focus 
in network research will shift to the development of Netapps, as Netapps are at the basis for 
articulating a new computer science problem: can we create computer programs that scale 
to the size of the Internet? In other words, what are the controllability and programmability 
limits of Netapps?

Summary

ix
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Introduction

1

Moving to a larger purpose widens 
the range of solutions.

Gerald Nadler
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1.1  Motivation

Whether the result of careful design, fortunate accidents, or both, the Internet has evolved 
from an experiment [1] to one of the largest and most complex systems ever built. In some 
countries, the Internet has now surpassed voice-communications as the major service of 
telecommunication infrastructures. Billions of people are now using Internet applications, 
such as e-mail, YouTube, and Facebook on a daily basis. Indeed, the Internet has become 
an important, if not the most important, means for exchanging information. Still, it marks 
only the beginning of its essential role in all aspects of the information society, such as 
smart cities, connected cars, and other cyber-physical systems [1]-[3].
	 The consequence of these developments is that computer networks are becoming increas-
ingly complex and difficult to innovate. With each new technology and development the 
number of combinations and interactions with existing technologies and devices only in-
creases. This is unsustainable in the long run. It is inefficient and expensive to introduce 
technology as a package of hardware and software, which have to be embedded in existing 
systems often in an application-specific manner. A new innovation model is required in 
which hardware, software, and services are decoupled.
	 This thesis presents the concepts for a sustainable innovation model for computer net-
works based on software. The concepts have been developed to solve three problems in the 
development of complex distributed systems, such as Youtube or a sensor network span-
ning cities. The first problem is the diversity of these applications for which network infra-
structures facilitate network services. The total network demands for these systems span all 
dimensions of networks: more speed, more mobility, more connections, and more real-time 
capabilities [4]. A network infrastructure simply cannot accommodate the peak usage in all 
dimensions. For example, network infrastructures have to deal with transfer of large files 
to massive amounts of Twitter messages to real-time streaming of data from e-Science ex-
periments to supercomputers. The configuration of networks to accommodate the diverse 
network requirements of applications without over dimensioning goes far beyond the capa-
bilities of current protocols and services available to network management systems. 
	 The second problem is that the pace of technological developments is so high that we are 
approaching a need for sophistication in the development, deployment, and management 
of network that simply is too complex without information technology [5]. The concept of 
self-organizing networks (SON) in mobile networks shows that mobile networks are now 
reaching a level of complexity that only computer programs can determine in which the op-
timal network configuration parameters [6]. Where it used to be possible to make manual 
interventions, the speed, scale, and complexity of networks and applications require sys-
tems that understand the operating environment and continuously adapt to changes.
	 The third problem is that current Internet applications must act in harmony with the 
underlying networks. Internet applications, such as YouTube, are aware of the network 
environment in which they operate [7], [8]. For example, the performance optimization 
achieved by the developers of content delivery networks for efficient streaming of videos is 
to minimize geographical distance between their servers and end-users [9]. Essentially, de-
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velopers integrated their application in the Internet for accessing and exploiting details of 
the network in an application-specific way. In general, complex distributed systems might 
require control over the network infrastructure normally hidden by the layers of the Internet 
model.

Figure 1. Infrastructure clouds are the basis for future telecom infrastructure. They can be repro-

grammed for application-specific exploitation.

	 This thesis shows that a simple concept can solve these problems (see Chapter 2). In short, 
an application that programs a network is introduced. The application implements the 
technologies as well as the configuration and management procedures of a network service. 
As the application is a program, it can be tuned for specific customers, applications, and 
network service demands. The assumption, however, is that networks are programmable, 
such that in the extreme applications can control any aspect of a network. For example, the 
application might redirect and modify packets or re-configure routers. Looking at the con-
cept from the computer scientist’s perspective (see Figure 2), the network is a distributed 
computing environment in which a developer creates an application program (1) that in-
structs a collection of network elements (2) to perform specific tasks described in program 
code (3). Consequently, the introduction of a specific network technology is simply the cre-
ation of a new application program. This is a new avenue of research for computer science¹  
that has not been given attention yet: how to create a methodical process for programming 
networks from application programs? In this thesis, the required concepts and finally an 
integrated framework are presented along with their proof of concepts. 
	 The research problem is decomposed into four research questions (Section 1.3). Their so-
lutions are contributions to the thesis (Section 1.4 and Chapter 2-5) and provide the basis of 
a novel concept for solving the presented research problem, which is named Internet facto-
ries (Chapter 6). Finally, the solution to the research questions are presented in Chapter 7.

¹ The University of Amsterdam summarizes computer science as controlling complexity [10].
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Figure 2. In its elementary form, a programmable network is a collection of network elements that 

can be programmed to act in a specific way. A developer creates a computer program (1) that in-

structs a collection of network elements (3) to perform specific tasks (2). The subject of this thesis 

is to describe a methodical process for programming the collection of programmable network ele-

ments.

1.2  Related Work

In its elementary form, a programmable network is a collection of computers, i.e., program-
mable nodes, which can be programmed in application-specific ways (see Figure 2). Pro-
grammable nodes can be loaded with a baseline of functionality, such as the Internet suite 
[11], but they can also be loaded with application-specific networking stacks [12]-[14]. 
Programmable nodes can be made to share resources with multiple networking stacks si-
multaneously [15]-[20]. Programmable nodes can also be used to add new features or to 
adapt to new operating conditions. These capabilities are possible because network behav-
ior is implemented in software.
	 Programmable networks enable management of network resources, which specialized 
single-purpose network devices do not offer. With programmable networks, Internet ser-
vice providers can tailor software to deliver application-specific network control and au-
tomation [22]-[25]. Network can also include application servers and content for appli-
cations that are easily affected by small disturbances in the network. Augmented reality 
[21] is such a use case in distance between servers and end-users impact the quality of 
experience. With programmable network elements, networks can be efficiently deployed, 
scaled, and removed, making optimal use of the infrastructure resources [26]-[28]. In tra-
ditional telecom, migration and decommissioning of legacy networks and services is often 
a problem. Finally, programmable networks are a solution when flexible deployment and 
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repurposing are required [30], [31]. In sensor networks, energy constraints and highly 
specific application domains prevent sophisticated layered architectures found in telecom 
and the Internet, witnessed by the plethora of protocols and architectures developed over 
the years [29]. Though programmable network research had considerable interest over the 
years, researchers explored the design space of programmable networks rather than their 
use.
	 The primary goal of major programmable networking frameworks was to expose a set 
of programmable features to network designers rather than application developers. Active 
networks, for example, enable customization of programmable nodes by loading and ex-
ecuting specific components and functions referenced by third parties via tags or code in-
jected in packets [32]. The approach of clean-slate networks prefers programmable nodes 
in which behavior is determined by an interconnection of objects [12], [33], [34]. Rather 
than using sophisticated programmable nodes, Software Defined Networks (SDN) intro-
duced a centralized programmable component that instructs network nodes [35]. In these 
developments, the exploitation by applications for application-specific services received 
little attention.
	 To exploit the flexibility of programmable networks, either network protocols and services 
need more knowledge about the applications or applications need more knowledge about 
network protocols and services. This inevitably leads to more complexity, as more interfaces 
are required for information exchange and control. For example, employing sophisticated 
security policies [36], packet filtering [37], and quality of service capabilities [24], [38] 
also requires more knowledge about applications (e.g., recognizing voice and web traffic) in 
addition to control over topology, paths, and link qualities. Paradoxically, such crosscutting 
concerns can only be dealt with when the network engineer understands the application. 
Only then network engineers can program the network with expert systems and artificial 
intelligence [6], [39]. From the developer’s perspective, this paradox applies as well, as 
choices about where to place application code, what traffic to filter, where to redirect traffic, 
and how to recover from failures all depend on network state. 

1.3  Problem Statement

This thesis presents the concepts in which distributed applications program network ser-
vices (see Figure 2). To solve the paradox of crosscutting concerns, the problem is to find 
a concept that can be understood by both network engineers and application developers. 
Additionally, it must be assumed that in general not all nodes in a network can be pro-
grammed. This is due to multi-domain constraints, legacy networks, transparent overlays, 
multi-layer networks, or simply because there are no interfaces to exercise the required con-
trol over intermediate networks, such as with legacy networks. Hence, the entire program-
mable network design space is bounded by such limitations. Developers must acknowledge 
such limitations as part of their programming problem. In short, the problem is:
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	 1)		 What are the common patterns for the design of applications that use 
			   programmable networks and how can these patterns be described in 
			   an architectural framework? 

	 Conflicts and feature interactions might occur when multiple programmers have con-
trol over a programmable network. An obvious solution is to create separate programmable 
network infrastructures for each application domain. In terms of cost, open-endedness, 
and sustainability, it is better to create a network infrastructure in which resources can 
be shared than to create a dedicated single-purpose network infrastructure. Sharing the 
programmable network infrastructure requires some elementary functions for managing 
resources amongst multiple users typically provided by resource manager. So, the manage-
ment of programmable network resources leads to the second research problem:

	 2)		 How can programmable networks support multiple application programs 
			   that control networks in application-specific ways? 

	 When developers program a network in a specific way, they must also implement its man-
agement. Essentially, the operational boundaries of the (programmable) network deter-
mine the tolerance of the application to disturbances in the network. In general, network 
management systems ensure that the network operates within operational boundaries, 
which are determined by the network operator. However, the range of interventions to com-
pensate events, such as congestion, errors, and failures, differ from application to applica-
tion. If developers implement network interventions as part of an application-specific con-
troller, they have to be aware of the impact of interventions on the network and application. 
This leads to our third research problem:

	 3)		 How can programmable networks be controlled from application 
			   programs, and how do controllers affect application design?

	 Clearly, programming a collection of network elements from scratch without support 
from frameworks and libraries, such as for the Internet suite, is a daunting task. State of the 
art network programming libraries has made distributed programming so easy that devel-
opers can forget the technologies facilitating network communication. Any developer that 
takes on the task of programming a network beyond the Socket API is confronted with an 
enormous increase in complexity and crosscutting concerns. Even if developers decide to 
create a new approach to networking, a clean-slate solution for example, they would still have 
to implement (all or part of) the network functions described in the OSI reference model 
[40]. These network functions are elementary for remote communication. For practical use 
of programmable networks in application programs, the task of developing, deploying, and 
managing programmable networking solutions must be simplified. In other words:



17

	 4)		 How to structure the development, deployment, and management programmable 
			   network applications that make crosscutting concerns manageable?

Figure 3.  The concepts presented in this thesis required for solving the research problem.

1.4 Contributions

This thesis introduces four concepts that are required for solving the presented program-
ming problem (Figure 3). The first contribution is an architectural framework, called User 
Programmable Virtualized Networks (UPVN) (Figure 3, 1), which defines elementary com-
ponents spanning the design space of the programmable networks and shows how to cre-
ate programmable networks from application programs. For instance, the initial UPVN 
prototype showed for the first time how application developers could control a collection 
of programmable nodes from a program. The second contribution is generalized Token 
Based Networking (gTBN) (Figure 3, 2), which provides a solution to partition a network 
infrastructure into multiple distinct programmable networks. These distinct programma-
ble networks are associated with specific network services and user groups. The third con-
tribution is an Application Framework for Network Control (Figure 3, 3), which introduces 
an elementary control loop application for application-specific network management. The 
final contribution is the Internet Factories (Figure 3, 4) concept that provides a methodical 
process for programming computer networks from application programs. In the following 
sections the contributions are described in more detail.

2) Use tokens to partition a network infrastructure into multiple  
distinct programmable networks (Ch. 4 and 5). 

1) Application programs 
program the network 

(Ch. 3) 

4) Use standardized components and common patterns to 
develop, deploy, and manage programmable networks. (Ch. 7) 

3) A control loop to 
manage interaction 
between application 

program and network 
(Ch. 6) 

Network infrastructure 

Complex distributed applications 

Programmable networks 
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1.4.1  User Programmable Virtualized Networks

Chapter 2 introduces the concept of User Programmable Virtualized Networks (UPVNs). 
UPVNs deliver application specific services using network element components that devel-
opers can program as part of an application. In Chapter 2, UPVN’s architectural framework 
is described and it is shown that its development is application driven, creating only those 
facilities in the network crucial for applications. The proof of concept presented in Chapter 
2 and its implementation in Mathematica [41] also shows for the first time how an enor-
mous wealth of mathematical, computational and visualization software can be applied to 
solve application specific network issues. 
	 Figure 4 shows the first UPVN prototype in which programmable network elements are 
controlled from an application, in this case Mathematica which is a scientific computing 
environment [42]. The visualization shows the network layer topology of a 13-node pro-
grammable network developed earlier [43]. The visualization was the result of a breadth-
first search algorithm implemented in Mathematica, which was executed on the program-
mable network.

Figure 4. The first UPVN prototype enabled a Mathematica, a scientific computing environment, to 

control a 13-node programmable network. The screenshot also shows that topology matters can be 

dealt with algorithmically (ArticulationVertices[g], see Chapter 2,5 and 6).

1.4.2  Generalized Token Based Networking

The UPVN concept shows that networks services can be implemented as applications that 
program a network. When the network is shared, user traffic might belong to different 
applications, so there is need for a protocol independent way to bind applications to the 
specific network services delivered by these applications. The Generalized Token Based 
Networking (GTBN) architecture presented in Chapter 1 enables dynamic binding of user 
groups, which can be a group of users or a collection of applications, to application-specific 



19

network services in their own programmable network environment. GTBN uses protocol 
independent tokens to decouple authorization from time of usage. The use of tokens also al-
lows a third party to act as a resource manager for provisioning application-specific services. 
The initial implementation of GTBN extended the network stack on hosts and demonstrat-
ed for a number of distributed applications, such as MPI and GridFTP, how applications 
can dynamically bind to a network service. 
	 The Interactive Networks prototype (see Section 1.4.5) implements the GTBN architec-
ture using packet-processing graphs. The packet processing graphs can be manipulated 
by a multi-touch user interface shown in Figure 5. Figure 5 also shows how packets are 
processed. Received packets (netin) are filtered by token (tbs) before further processing 
takes place. The (tknlss) component allows normal IP traffic.

Figure 5. In Interactive Networks, packet-processing graphs isolate application-specific behavior. 

The packet-processing graphs can be manipulated online via the multi-touch user interface. Interac-

tive networks uses token networking to allow traffic manipulation on a per packet basis.

1.4.3  Application Framework for Programmable Network Control

Errors, failures, and unexpected events can be expected in any information-processing en-
vironment. Therefore, UPVNs require the ability to implement measures against events 
that impact network and application services. Different from the operation of autonomous 
routing protocols and traditional network management systems, the automated interven-
tions of UPVNs are the result of application logic. An application framework for program-
mable network control was developed that integrates the control over programmable net-
work elements with application logic. Consequently, the application framework shows how 
network events impact application logic and how specific knowledge of network protocols 
and services limits scalability of application logic. This leads to a new and fundamental 
scientific problem on how to create programs with predictable robustness and adaptability, 
which is considered future work (see 7.2).
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Figure  6. Amazon EC2 and Brightbox Infrastructure-as-a-service clouds were used to deploy UP-

VNs. In one instance, a 163-node UPVN was created using all the 18 data center locations of the 

global cloud infrastructure.

1.4.4  Internet Factories: Creating Application-Specific Networks On-Demand

The Internet factory concept is based on the broader concept of software factories in soft-
ware engineering. The rationale of software factories is that the majority of application de-
velopment can be captured by standardized components and common patterns in software 
libraries. Similarly, Internet factories enable developers to re-use and customize known 
solutions in the design and implementation of programmable networks and to make their 
own solutions available to other developers. Moreover, years of knowledge and best prac-
tices in systems and network engineering can be made available via software libraries.
	 Internet factories show how to create UPVNs on top of the Internet even if network opera-
tors do not facilitate the programming of their routers. For example, a 163-node UPVN 
was deployed on the 18 locations of Amazon EC2 [44] and Brightbox’s [45] global cloud 
infrastructure. This proof of concept shows that the concepts and technologies that were 
developed in this thesis can already be applied today. With the use of cloud-based network 
elements (see Figure 6) and the Internet, UPVNs can be created and deployed while taking 
into account administrative domains, legacy networks, and limited network programming 
interfaces. Summarizing, cloud-based networks mitigate the lack of full control over the 
network infrastructure in a way that was not possible with programmable networks (such as 
active networks).
	 The interfaces required by Internet factories can be implemented in existing networks or 
provided by infrastructure-as-a-service clouds [27], [46]. Therefore, its concepts can be ap-
plied to solve problems in current networks. For example, this thesis led to three patent ap-
plications for creating application-specific network optimizations in mobile networks [47], 
fixed networks [48], [49], and end-user devices [50]. 
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1.4.5  UPVN Prototypes

A number of UPVN prototypes have been created of which three are described in this the-
sis (Chapter 1,4 and 6). The initial UPVN proof of concept was developed on a 13-node 
computer network consisting of desktop computers and a customized Linux kernel. The 
first UPVN prototype was demonstrated at the Dutch Exhibition booth, Super Computing 
2008, Austin, Texas, and its design and implementation later published [51], [52]. The 
proof of concept, called Interactive Networks, consisted of a network implemented by VM-
ware virtual machines running a UPVN. The proof of concept allowed users to create and 
manipulate network paths interactively using a graphical user interface on a multi-touch 
table (see Figure 7). Interactive networks illustrated how networks existing only in software 
can be controlled from the application domain. Subsequent experiments brought network 
control to other application environments, such as scientific computing [41]. Interactive 
networks was also integrated into a Grid [53] workflow management systems to allow man-
agement of network resources from workflow-enabled applications (presented in Chapter 
4). The proof of concept using scientific workflows was demonstrated at Super Computing 
2009 in Portland, Oregon. 

Figure 7. Interactive networks enables users to drag paths between video stream producers and 

screens displaying the streams. UPVN supports application-specific behavior, such as drawing 

loops, creating a specific chain of nodes to traverse for packet flows. 

	 The early experiences and collaborations with developers of scientific workflows showed 
that programmable networking concepts fit well in Grid architecture, as scientific applica-
tions already interact with workflows and Grid to request and configure resources. Eventu-
ally, the whole Grid infrastructure was encapsulated in virtual machines. A prototype was 
developed capable of bootstrapping tailor-made Grid infrastructure for individual appli-
cations [54] and complete workflows [55]. Since the Interactive Networks prototype was 
encapsulated in virtual machines as well, this experience could also be applied to bootstrap-
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ping of networks. Figure 8 shows a discovery step of the prototype developed in 2010. A 
part of the process of booting Interactive Networks is the discovery of the virtual network 
infrastructure. The creation and deployment of an interactive network with arbitrary net-
work size and topology was implemented in an application program. The prototype was 
demonstrated at the Dutch exhibition booth at Super Computing 2011, Seattle and the 
3rd International NGN workshop 2011 in Delft, the Netherlands. Practical experience in 
the design and implementation of the presented concepts, frameworks, and architectures 
shaped the development of Internet factories.

Figure 8. A part of a visualization of Interactive networks while it is discovering the virtual network 

infrastructure.

1.5  Overview of Work

Research started from the idea the network is a program. Long before the academics and 
industry invented Network Function Virtualization (NFV) and Software Defined Networks 
(SDN), the work in this thesis already published the practical feasibility of their underlying 
concepts [43]. One of the challenges of the network is a program idea was to move from 
programming single network nodes, such as with Netgraph [56] and Click [57], to the 
programming of a collection of network nodes from a single program. My exploration of the 
programmable network design space started with programming commodity servers with 
Ruby programs (capable of controlling Linux packet processing). Later, also experiments 
with programmable sensor network nodes were done. The choice for sensor network nodes 
was driven by research on sensor networks, which led to new programming paradigms for 
programming a collection of sensor nodes, e.g., Macroprogramming [30]. 
	 One of the results of sensor network research, which we also used for design space explo-
ration of programmable sensor networks, was Java Sun Spots [58]. Java Sun Spots were 
programmable network nodes with a wireless connection and numerous sensors, such as 
a thermometer. A complete Java integrated development environment supported applica-
tion development and enabled rapid prototyping and design space exploration, which was 
done from 2009 to 2011 by a number of students and as part of a master course Advanced 
Networking [59].
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	 The originally developed scriptable Ruby environment for packet processing was further 
extended with Streamline [60] supporting packet manipulation at line speed on physi-
cal machines. However, programming a network of physical computers leads to practical 
problems. For example, the development cycles were long because a single bug would crash 
the whole network and require manual reset. Also Openflow [22] and ForCES [61] were 
considered for programming networks, though these technologies were too limited for de-
veloping a reference implementation of the UPVN architectural framework. Further work 
explored the use of virtual machines. Virtual machines allow manipulation of networks be-
yond the state-of-the-art of physical network elements.
	 The most straightforward manner to explore the use of virtual machines was to create a 
controller for deployment and configuration of existing prototypes on virtual infrastruc-
tures, such as Infrastructure-as-a-Service clouds. The development of such a controller for 
UPVN led to both conceptual and practical problems, amongst others: network manage-
ment, location selection, dynamic user-network interfaces, multi-domain interoperability, 
and virtual machine image distribution. The design space for cloud-based deployment and 
configuration of programmable networks was explored in student projects and TNO re-
search projects. In 2012, I developed a cloud-based prototype of a programmable network 
infrastructure to prove that networks could be created, deployed, and managed from com-
puter programs. Essentially, the prototype combined all the previous work and resulted 
in the Internet factories concept. KPN, the Royal Dutch Telecom Operator, Long Term 
Research program also allowed further refinement of cloud-based network design and de-
ployment. The architecture and implementation of the Internet factories concept estab-
lishes that the essence of a network is a Netapp. A Netapp is a program that determines 
the behavior and life cycle of network nodes, e.g., their interactions, and interventions to 
compensate for errors and failures. In Internet factories, the network is just a manifestation 
of the Netapp and research continues on its design and implementation. So, it’s not about 
programmable network nodes anymore, but about the programs that created them. 
	 A timeline of the work is shown on pages 24-25.

1.6  Thesis Outline

User Programmable Virtualized Networks (UPVNs) and its initial prototype are described 
in Chapter 2. Then, in Chapter 3, the generalized Token Based Networking (GTBN) ar-
chitecture is presented. Chapter 4 describes how these concepts can be applied to work-
flow management systems to control networks for specific applications and user groups. 
Experience and lessons learned from design and implementation of the prototype lead to 
an application framework for network control, which is described in Chapter 5. Chapter 6 
describes the Internet Factories concept that simplifies the creation and deployment of user 
programmable virtualized networks. Finally, conclusions, future work, and an outlook are 
presented in Chapter 7.
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Figure 54. A complex ICT system created from several, distributed, application parts contained 
by virtual Internets.  

7.3 Outlook 

Figure 54 shows a scenario that becomes possible when applying the concepts 
presented in this thesis. This figure shows a global telecommunication infrastruc-
ture (1). The Internet (2) is just one of the complex ICT systems using (3) network 
infrastructures. Each complex ICT system is supported by its own specific Internet, 
which might consist of billions of devices (4). These complex ICT systems expose 
services (5) that can be used by other ICT systems. The Internet itself becomes the 
ecosystem to create and deploy large and complex ICT systems. The ecosystem 
consisting of an Internet, its infrastructure, and applications, are managed by 
Netapps. Figure 54 also shows that in the future there might be many Internets, 
including legacy Internets (6). While some of these Internets will only support ap-
plications, other Internets will serve specific user groups, such as a children’s Inter-
net.  

The described scenarios might sound extreme, but it is becoming reality. In a 
few years from now, the analysis of a network will reveal many Internets (see Fig-
ure 55). Some of them might have nodes that migrate from lamppost to lamppost to 
deliver mobile users the best possible service. Produced by Internet factories, these 
Internets host complex ICT systems from many collaborating organizations. They 
run on top of virtual machines in a highly dynamic network infrastructure continu-
ously adapting to their operating environments. 

To quote Bill Gates: ‘The Internet is becoming the town square for the global 
village of tomorrow’. There are just town squares for many global villages and 
there is no single Internet that can fulfill all the needs for each global village. 
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From applications program the network ... to the Netapp is the network.

2014

The citations between brackets are 
references to overview of work shown 
at the end of the thesis.
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This chapter introduces the concept of a User Programmable Virtualized Network, which 
allows networks to deliver application specific services using network element components 
that developers can program as part of a users application. The use of special tokens in data 
or control packets is the basis of a practical, yet powerful security and AAA framework. The 
concept allows for implementations with a low footprint that can operate in a multi domain 
network operator environment. We demonstrate the ease with which one can build appli-
cations and address networking problems as they appear for example in sensor networks.

2.1  Introduction

The concepts defined in the OSI model for the interaction between networks, end systems 
and their applications, are widely accepted [11]. International telecommunication infra-
structures and the Internet are based on these concepts. Because details like network topol-
ogy are irrelevant to most applications, OSI considers only end-to-end transport services.
	 What if network providers cannot understand all of your network service demands any-
more? What if the network cannot be over-provisioned due to the involved costs? If one 
detects that an IP router will fail shortly, how can we route a VoIP stream over an alternate 
path before the router actually fails and before the users notice anything? Do video streams 
of a burning car have priority over those of collided cars not far away in a heavily congested 
network? In such cases, there is a need to tune the network service to the demands of the 
users and their application programs; one has to facilitate application specific networking.
	 Neither the set of Internet protocols, nor a network management system (NMS) provides 
practical control interfaces to individual network nodes. The services of TCP and UDP are 
often used trough socket APIs. Socket APIs however, hide most of the network details such 
as topology. In theory, using the NMS would be one way for the application programmer 
to discover and possibly control network elements, such as Cisco’s Active Network Abstrac-
tion [62]. The span of control of an NMS however, is typically restricted to a single network 
operator domain. Furthermore, NMSs are designed to support operators and not end user 
programs. Moreover, only operators, not end users, are allowed to use the NMS.
	 The concept of programmable networks is sufficiently well known to create concepts and 
technologies that support application specific networking [14]. The concepts differ in how 
applications interface with network nodes. Basically there are three variants: agents, active 
messages (also known as active networks) and remote method invocations (RMI) [63]. In 
short, agents are programs that travel from node to node, active messages are network pack-
ets extended with application code and web services are a great example of RMI. The IETF 
ForCES working group standardizes common elements in IP routers [64]. One of the ben-
efits is that elements may be changed or added and combined with web and Grid services 
[65], [66]. ForCES does not have a security concept that is practical in a multi domain net-
work (see Section 2.3). Currently, years of developments in programmable networks have 
lead to complex frameworks with corresponding complex technologies. This prevented the 
emergence of killer applications and market impact [67].
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	 Sensor networks are frequently designed to operate in a very dynamic context, in which 
sudden environmental changes may cause parts of the network to become isolated. This 
has inspired the ad-hoc networking concept, where a system of identically programmed 
sensors collectively supports a telecommunication service amongst themselves [68], [69]. 
Research, however, is predominantly focused on topics as autonomy and self-organization 
of sensor systems [69]. Little, if any, attention is given to the interaction between end-user 
applications and the sensor network and to the fact that in realistic situations sensor net-
works belong to multiple organizations.

Figure 9. UPVNs model for the interworking of a network element and applications. Left: the virtu-

alization of a network element (NE) as NE Component (NC). Right the virtualization of a network. 

The NEs are either interconnected directly to each or connect to the Internet (open lines).

2.2  User Programmable Virtualized Networks

User Programmable Virtualized Networks (UPVNs) is a concept that allows end-user ap-
plications to interact closely with network elements (NEs) such as IP routers. Ultimately 
UPVN concepts should be applied in sensor networks where technologies with small foot-
prints are required. Therefore, UPVN‘s development is application driven; creating only 
those facilities that are crucial for applications. Yet, UPVN uses much of the concepts pre-
sented in [65], [66]. Most importantly, using Grid concepts, one can regard individual 
NEs as resources, which are exploited through the Internet as components in application 
programs. A NE component (NC) can be seen as a manifestation of the NE in the applica-
tion, i.e. a virtualized NE. Consequently, all virtualized NEs together create a virtualized 
network, allowing interaction with user programs, as shown in Figure 9. Hence, our con-
cept is named User Programmable Virtualized Network or, abbreviated, UPVN.
	 For telephone conversations, the network access provider is responsible for setting up the 
end-to-end connection. An Internet service provider is used to connect to the Internet. For 
application specific networking, this is generally not possible. NEs along a path can belong 
to different network owners. Technical and other (e.g. financial) conditions to access and 
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use NEs along the path may differ such that the access provider cannot judge if NEs are 
good enough for the application. The application must make its own judgments. We de-
scribe in [70], that in multi domain situations, the use of tokens provides a practical and 
robust security and AAA framework.
	 A token can be considered as a reference to a service the user has agreed with the network 
operator. An application can interact with the NC in order to reach this agreement. By sub-
sequently allowing applications to insert these tokens in a secure manner into the data or 
control stream of a network, applications are able to signal the NEs that it is authorized to 
use the agreed service and to be accounted for it. Compared to the alternative, the integra-
tion of back office systems of network operators, a token based security and AAA mecha-
nism is easy to implement, see Section 2.3.

2.2.1   Virtualized network element

Figure 9 shows UPVN’s interworking model of a NE and a network of NE’s with applica-
tions. The NE uses technologies, such as Grid- and web services, to expose interfaces on the 
Internet. Through the interfaces a NE exposes, various applications interact simultaneously 
with the NE. As such, each application is capable to optimize the behavior of the NE ac-
cordingly. During the design phase of the application, the NE appears as an object, called a 
network component (NC), in the development environment. During run time, our model, 
as well as state of the art technology, allows dynamic extension of the set of NEs the applica-
tions interacts with.
	 To accommodate application specific packet processing, to set particular parameters of 
the NE, and to facilitate other functions NEs play in a UPVN, NEs have the ability to de-
ploy application components (ACs). ForCES [64] and the Click Router [57] deploy similar 
concepts. In UPVNs, the delivery method of ACs to the NEs is regarded to be application 
specific. As one of the available methods, one could use the NC to deliver the AC to the NE. 
In any case, care should be taken to avoid problems caused by ACs acting on the AC to NC 
network traffic, e.g. by using tokens.
	 ACs can either operate directly on the packets, or sent them to the NC. Then, through the 
NC, the application can manipulate the packet and sent it back. As an interesting conse-
quence applications can also be constructed that transfer the received packets via any of the 
NCs into another NE. This NE can put the packet via an AC on a network link or into the IP 
routing engine of the NE. We have called this process “packet warping”, as packets disap-
pear in one NE from the network, to reappear in a supposedly disjoint NE somewhere else.

2.2.2  NEs and the Internet

NEs have IP routing capability and can be connected to other NEs and the Internet. Con-
sider Figure 10, which shows eleven NEs. In UPVN NEs can disappear and reappear, simi-
lar to what happens in mobile sensor networks. The Internet is depicted as a network cloud, 
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appearing several times in Figure 10. NEs like 3, 7 and 8 have direct connections to other 
NEs (1, 4 and 5) via links that are completely under NE control. They may carry Internet 
traffic, but a NE could exert manipulation and control on it.

Figure 10. UPVN regards two kinds of links: those completely managed by NEs (straight lines) and 

Internet links (clouds).

	 Links such as between 9 and 10, that are not under control of a NE pair, carry in our 
model regular, best effort Internet traffic. NEs like 1 and 4 are linked also via the Internet. 
NE 10 is reachable only through the Internet. NE 11 is not connected at all yet, but could 
be, either directly or through the Internet. A manual or application driven action could be 
responsible for this.
	 Another way to look at Figure 10 is that the Internet is encapsulated with NEs. Because of 
this the Internet is implicitly virtualized in UPVN, allowing applications a specific multi-
point interaction with the Internet. UPVNs approach to application specific networking has 
deep impact on the behavior of NEs. The processing of packets is now, opposite to IP rout-
ers, inherently stateful: two identical packets sequentially send to a NE may be processed 
differently: for example processing may stop if the stored value is depleted in a pre-paid 
account.
	 Important questions are: “What functions of the NE should be exposed in the NC?” and 
“What functions should ACs have?” On basis of our experiences with virtualizations of 
optical switches [71], we would choose for the ability to intercept, re-route, and reserve 
resources such as transmission lines. It is however hard to make choices. For some applica-
tions, control over the TCP maximum segment size is crucial. Others would like to use a 
certain transmission path if the price is right at the right moment. In this paper we focus on 
important service aspects such as forwarding, transactions, topology and quality.

2.2.3  Token based NE services

Both the OSI model and the IP define various Transport and Link Layer services. Together 
they create end-to-end services. Hence packets do not contain fields explicitly designed to 
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trigger the invocation of specific AAA mechanisms and the correct NE services. In [70] we 
describe a secure token mechanism, which we use in UPVN in cases where NE services or 
the packets themselves have to be secured. In UPVN, tokens can be added for example to 
the IP options field.
	 Tokens can be cryptographical products using a key issued by the application. The result 
is placed in the IP options field, whilst the key is securely provisioned via a NC to a “Token 
AC” in the NE. Cryptographic operations of the Token AC validate the token. Logic in the 
Token AC selects the proper AAA AC and has subsequently other AC services executed. If 
a packet does not contain tokens, if tokens are not recognized, or if no ACs are configured 
who operate on regular IP packets, the packet follows the default IP processing in a NE. 
Operators of different network domains only need to understand the cryptography of the 
token and its associated key and do not have to integrate each others AAA and trust systems 
[70]. For this reason, UPVNs use of tokens can ignore the discouragement of the ForCES 
working group to create access to NEs for end-user applications from other network opera-
tor domains. Finally, security and AAA issues related to the use of the NC mechanism could 
be addressed by Grid and web service technologies, although in the case of sensor network 
applications, they may require too many resources.

Figure 11. Overview of the NE implementation in Linux.

2.2.4  Implementation of the NE service

To gain experience, and to develop the UPVN concept toward small footprint implementa-
tions, a prototype NE was implemented. This NE is basically a PC with Ethernet cards run-
ning the Linux OS. The OS was modified to add functions in kernel and user space. Figure 
11 shows the architecture of the NE. The design is straightforward: we have encapsulated 
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the in- and outputs of the Linux Kernel IP routing and forwarding functions with facilities 
to filter and to inject packets. The packet injection and filter facilities use the netfilter func-
tion libnetfilter_queue (the successor of libipq). Libnetfilter_queue acts both in the 
kernel and user space of the OS. ACs, which execute in user space, can use it to exercise de-
tailed control over the IP traffic. Packets can be dropped, generated and modified by the AC 
and, through the AC-NC connection, even by applications. ACs are stored in the Applica-
tion Component Collection (ACC). By manipulating the ACC, the Application Component 
Manager (ACM) controls the lifetime of an AC and the tree like chaining of AC. This en-
ables ACs to operate on one or more copies of packets or packets already modified by ACs.
	 The NC Collection Support module (NCS) takes care of the NE service interface and con-
tains functions to identify the NE and other functions that are helpful in case the NC be-
comes part of collections in applications.
	 Amongst others, NCS exposes the AdjNe AC that discovers the neighbors of a NE and 
identifies them as an NE or regular Internet node (router, end system).
	 The user-space programs in the NE are coded in Ruby [72], a language allowing an ef-
ficient first-time implementation of UPVN concepts. With Ruby’s DRb (a remote method 
invocation facility) the NE services interface was created, avoiding for the moment the com-
plexities and consequences of web services on a NE: parsers, web servers and performance 
implications [67]. Furthermore, it allowed exploring network service creation with clear 
concise Ruby programming. In Section 2.4.1 the use of web services is discussed.

Figure 12. Because of the NC that hides details of the NE implementation, applications are unable 

to discriminate between real and virtual NEs (VNE) that are application modules.

2.3  Virtual NEs and Virtual Links

As stated in Section 2.2.1 in UPVN it is possible to warp packets via the application be-
tween NEs. This, and the fact that the NC shields details of the NE, allows the existence of 
virtual links and virtual NEs, which reside inside the application.
	 Figure 12 shows three virtual network elements (VNEs). These application components 
may function such that it appears to have network connections between both to each other 
and to real NEs via NCs.
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2.3 Virtual NEs and Virtual Links 

As stated in Section 2.2.1 in UPVN it is possible to warp packets via the appli-
cation between NEs. This, and the fact that the NC shields details of the NE, allows 
the existence of virtual links and virtual NEs, which reside inside the application. 

Figure 12 shows three virtual network elements (VNEs). These application 
components may function such that it appears to have network connections between 
both to each other and to real NEs via NCs. 

 
Figure 12. Because of the NC that hides details of the NE implementation, applications are una-
ble to discriminate between real and virtual NEs (VNE) that are application modules. 

VNEs can be implemented in any way the application developer seems apt. It is 
rather straightforward to imagine that VNEs run the same algorithms as NEs. In-
deed, VNEs might contain complete IP routing functionality even with assigned IP 
addresses and as such bring the Internet into the applications. 

The concept of VNEs inspires to even more exotic constructs. The application 
developer is free to include NCs of NEs and VNEs in a VNE, the start of recursive 
pattern. A potential very useful application is one in which the application develop-
er pairs a VNE with a real NE. Parameters indicative for the performance of the NE 
are obtained by the VNE through an incorporated NC. Applications may then inter-
act for certain matters with the VNE. E.g. if the NE reports its links to the VNE, 
topology inquiries can be done to the VNEs. 

2.4 The Services of Virtualized Networks 

An application, which contains one or more NCs, is said to contain a virtualized 
network. An application program might contain only the NC of single NE even if 
the network contains hundreds of other NEs from which NCs can be obtained. Re-

connection, even by applications. ACs are stored in the 

Application Component Collection (ACC). By 

manipulating the ACC, the Application Component 
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Figure 3 Overview of the NE implementation in 

Linux. 

 

Amongst others, NCS exposes the AdjNe AC that 

discovers the neighbors of a NE and identifies them as 

an NE or regular Internet node (router, end system). 

The user-space programs in the NE are coded in 

Ruby [14], a language allowing an efficient first-time 

implementation of UPVN concepts. With Ruby’s DRb 

(a remote method invocation facility) the NE services 

interface was created, avoiding for the moment the 

complexities and consequences of webservices on a 

NE: parsers, web servers and performance implications 

[8]. Furthermore, it allowed exploring network service 

creation with clear concise Ruby programming. In 

section 4.1 the use of webservices is discussed. 

 

3. Virtual NEs and virtual links 
 

As stated in section 2.1 in UPVN it is possible to 

warp packets via the application between NEs. This, 

and the fact that the NC shields details of the NE, 

allows the existence of virtual links and virtual NEs, 

which reside inside the application. 

Figure 4 shows three virtual network elements 

(VNEs). These application components may function 

such that it appears to have network connections 

between both to each other and to real NEs via NCs. 

Such connections are easily implemented using socket 

APIs and local IP addresses.  

 

 
Figure 4 Because of the NC that hides details of the 

NE implementation, applications are unable to 

discriminate between real and virtual NEs (VNE) 

that are application modules. 

 

VNEs can be implemented in any way the 

application developer seems apt. It is rather 

straightforward to imagine that VNEs run the same 

algorithms as NEs. Indeed, VNEs might contain 

complete IP routing functionality even with assigned 

IP addresses and as such bring the Internet into the 

applications.  

The concept of VNEs inspires to even more exotic 

constructs. The application developer is free to include 

NCs of NEs and VNEs in a VNE, the start of recursive 

pattern. A potential very useful application is one in 

which the application developer pairs a VNE with a 

real NE. Parameters indicative for the performance of 

the NE are obtained by the VNE through an 

incorporated NC. Applications may then interact for 

certain matters with the VNE. E.g. if the NE reports its 

links to the VNE, topology inquiries can be done to the 

VNEs.  

 

4. The services of virtualized networks 
 

An application, which contains one or more NCs, is 

said to contain a virtualized network. An application 

program might contain only the NC of single NE even 

if the network contains hundreds of other NEs from 

which NCs can be obtained. Regardless if an 

application contains only one or all NEs, we say the 

network has a manifestation in the application. There 

are good reasons for manifestations with a single NC, 

for instance the filtering of traffic at a strategic point. 

Therefore, details of manifestations of networks are in 

UPVN considered application specific, requiring no 

general frameworks, facilities and structures. UPVN 

lacks general discovery services, brokers, billing 

services, AAA servers, etc. The usefulness of this 
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	 VNEs can be implemented in any way the application developer seems apt. It is rath-
er straightforward to imagine that VNEs run the same algorithms as NEs. Indeed, VNEs 
might contain complete IP routing functionality even with assigned IP addresses and as 
such bring the Internet into the applications.
	 The concept of VNEs inspires to even more exotic constructs. The application developer 
is free to include NCs of NEs and VNEs in a VNE, the start of recursive pattern. A potential 
very useful application is one in which the application developer pairs a VNE with a real 
NE. Parameters indicative for the performance of the NE are obtained by the VNE through 
an incorporated NC. Applications may then interact for certain matters with the VNE. e.g. 
if the NE reports its links to the VNE, topology inquiries can be done to the VNEs.

2.4  The Services of Virtualized Networks

An application, which contains one or more NCs, is said to contain a virtualized network. 
An application program might contain only the NC of single NE even if the network con-
tains hundreds of other NEs from which NCs can be obtained. Regardless if an application 
contains only one or all NEs, we say the network has a manifestation in the application. 
There are good reasons for manifestations with a single NC, for instance the filtering of traf-
fic at a strategic point. Therefore, details of manifestations of networks are in UPVN consid-
ered application specific, requiring no general frameworks, facilities and structures. UPVN 
lacks general discovery services, brokers, billing services, AAA servers, etc. The usefulness 
of this depends on the application. In sensor networks, for instance, there might just be not 
enough infrastructure around to support an elaborate framework.
	 The absence of a general framework is not only contrasting to major trends in program-
mable networks [14] but also to prior developments by the TINA consortium of leading 
telecommunication vendors, Telco’s, and their research institutes. They modeled the net-
work and administrative facilities of a traditional telecom operator [73] in an object ori-
ented, CORBA based [63], framework.
	 The details of the interfaces between applications and NEs are also application specific. 
Depending on their insights, developers choose different implementation technologies for 
a given application. As stated in Section 2.2.4, the Ruby RMI DRb was currently consid-
ered to be more suitable to implement a NE service interface then web services. The foot-
print of web services in the NE was expected to be too large.
	 In this thesis, we investigate the consequences of the network virtualization itself. We do 
not want to standardize interfaces or invent brokers, directory services, etc., before experi-
ence, insight and scientific studies yield reasons to do so.
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Figure 13. Architecture of the virtualized network service. This architecture is specific for topology 

aware applications as the ones we build in Mathematica.

2.4.1  The implementation of UPVN

We have created several applications of network services following the UPVN concept; 
some of them are described in the next sections. The service architecture of Figure 13 fol-
lowed from our applications and experiments. We have created a Virtualized Network Ser-
vice (VNS) that exposes a SOAP based web services interface. Here, its large footprint is not 
considered to be a problem, since the VNS runs on a dedicated computer and not on a NE 
with limited capabilities as in the case of sensor networks.
	 The combined services of the Network Utility Service (NUS) and the Network Component 
Collection (NCC) can be used via the VNS. The NCC provides access to specific ACs. Fig-
ure 13 illustrates that NCs have (Ruby specific) connections to the NE and more specifi-
cally to the NCSs service interface (see Section 2.2.4). Applications and NEs can load the 
NEs with specific ACs during run time using the ACM (Section 2.2.4).
	 The NUS was developed for applications that use path and topology functions to manipu-
late certain token-tagged streams. The Token Transaction Service (TTS) allows for transac-
tions on reservation of NE packet forwarding capacity between specific incoming (ingress) 
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Figure 13. Architecture of the virtualized network service. This architecture is specific for to-
pology aware applications as the ones we build in Mathematica. 

2.4.2 The discovery of NEs and Internet access points 

The network service is provided through NCs in the application. But how does 
the application know which NCs are available? Clearly there are many answers to 
this question. If the NE service interfaces are constructed with web service technol-
ogies, the UDDI (Universal Description, Discovery, and Integration) mechanism 
presents itself. Alternatively, in our experimental implementations NEs are regis-
tered manually at the NCC. However, one can do without a central registration of 
NE service interfaces. This is because that by using neighbor discovery services on 
NEs, a single NC suffices to discover the services interfaces of all other NEs in a 
connected graph, e.g. by using AdjNe (see section 2.4). 

Consider the topology of Figure 10. Suppose the application contains only a ref-
erence to NE 5, then the BFS algorithm [74] would find almost all of the NEs. NEs 
10 and 11 are not found. NE 10 is connected to 5 only through the Internet and 
cannot be discovered by AdjNe from 9. NE 11 has neither connection to the Inter-
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etc before experience, insight and scientific studies 

yield reasons to do so. 
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We have created several applications of network 

services following the UPVN concept; some of them 

are described in the next sections. As a result, the ser-
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Figure 5. Architecture of the virtualized net-
work service. This architecture is specific for 
topology aware applications as the ones we 
build in Mathematica. 
 

AdjNe is also used by the Topology Service (TS) to 

find NEs and Internet access points. The TS is also 

able to store discovered NCs in the NCC. Furthermore, 

it stores topology information in objects. In this object 

model, each NE is characterized by its ports and links 

to other NEs or Internet Access Points. The object 

model accommodates virtual ports and links and there-

fore VNEs, see section 3. 

 

4.2. The discovery of NEs and Internet access 

points 
 

The network service is provided through NCs in the 

application. But how does the application know which 

NCs are available? Clearly there are many answers to 

this question. If the NE service interfaces are con-
structed with webservice technologies, the UDDI 

mechanism presents itself. Alternatively, in our ex-

perimental implementations NEs are registered manu-

ally at the NCC. However, one can do without a central 

registration of NE service interfaces. This is because 

that by using neighbor discovery services on NEs, a 

single NC suffices to discover the services interfaces of 

all other NEs in a connected graph, e.g. by using 

AdjNe (see section 2.4). 

Consider the topology of Figure 2. Suppose the ap-

plication contains only a reference to NE 5, then the 

BFS algorithm [16] would find almost all of the NEs. 

NEs 10 and 11 are not found. NE 10 is connected to 5 

only through the Internet and cannot be discovered by 

AdjNe from 9. NE 11 has neither connection to the 
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and outgoing (egress) links of specific tagged IP packets. The TTS controls a specific AC for 
this. The Uniform Cost Search Service (UCSS) finds the least cost path by using the AdjNe 
AC described in Section 2.2.4. AdjNe is also used by the Topology Service (TS) to discover 
NEs and Internet access points in a UPVN. The TS is also able to store discovered NCs in 
the NCC. Furthermore, it stores topology information in objects. In this object model, its 
ports and links to other NEs or Internet Access Points characterize each NE. The object 
model accommodates virtual ports and links and therefore VNEs, see Section 2.3.

2.4.2  The discovery of NEs and Internet access points

The network service is provided through NCs in the application. But how does the applica-
tion know which NCs are available? Clearly there are many answers to this question. If the 
NE service interfaces are constructed with web service technologies, the UDDI (Universal 
Description, Discovery, and Integration) mechanism presents itself. Alternatively, in our 
experimental implementations NEs are registered manually at the NCC. However, one can 
do without a central registration of NE service interfaces. This is because that by using 
neighbor discovery services on NEs, a single NC suffices to discover the services interfaces 
of all other NEs in a connected graph, e.g. by using AdjNe (see section 2.4).
	 Consider the topology of Figure 10. Suppose the application contains only a reference to 
NE 5, then the BFS algorithm [74] would find almost all of the NEs. NEs 10 and 11 are 
not found. NE 10 is connected to 5 only through the Internet and cannot be discovered by 
AdjNe from 9. NE 11 has neither connection to the Internet, nor to the network of NEs. For 
applications to interact with NEs like 10 and 11, some other means have to be used to find 
them.

2.5  UPVN Applications

In UPVN, applications might be distributed, but they will act as a single entity. Once the 
virtualized network is created, it is available to application developers in the form of NCs, 
probably implemented as objects. Then, decades of progress in computer sciences can be 
applied immediately to create new network aware and network centric applications. To il-
lustrate this, we have experimented with implementations of VNS to facilitate an interface 
with Mathematica [75] on basis of web service technologies. The Virtualized Network Ser-
vice described in Section 2.4.1 was the result. Figure 14 shows a network topology drawn 
by Mathematica. Figure 15 and Figure 16 illustrate the apparent ease of the use of VNS by 
Mathematica. With such an arrangement an enormous wealth of mathematical, computa-
tional and visualization software can be applied to solve application specific network issues.
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Figure 14. Network topology and visualization of the shortest path (thick line) function in Math-

ematica’s Combinatorica package.

Figure 15. Initializing the network component webservice in Mathematica.

Figure 16. NE discovery in Mathematica. 

2.5.1  Paths and applications

A whole body of graph theory is at the disposal of the application developer to develop algo-
rithms that satisfy particular purposes. Using flow calculations on basis of actual and near 
real time data, one can judge how much network capacity is unused. For instance, with a 
uniform cost search algorithm, it is straightforward to develop an application that finds a 
least cost route, with a minimum bandwidth guarantee. More sophisticated algorithms al-
low faster results and faster run time, albeit requiring more understanding from the appli-
cation developer. Figure 17 shows the determination of a shortest path with Mathematica’s 
ShortestPath function from the Combinatorica package.
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net, nor to the network of NEs. For applications to interact with NEs like 10 and 11, 
some other means have to be used to find them. 

2.5 UPVN Applications 

In UPVN, applications might be distributed, but they will act as a single entity. 
Once the virtualized network is created, it is available to application developers in 
the form of NCs, probably implemented as objects. Then, decades of progress in 
computer sciences can be applied immediately to create new network aware and 
network centric applications. To illustrate this, we have experimented with imple-
mentations of VNS to facilitate an interface with Mathematica [75] on basis of web 
service technologies. The Virtualized Network Service described in Section 2.4.1 
was the result. Figure 14 shows a network topology drawn by Mathematica. Figure 
15 and Figure 16 illustrate the apparent ease of the use of VNS by Mathematica. 
With such an arrangement an enormous wealth of mathematical, computational and 
visualization software can be applied to solve application specific network issues. 
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Figure 15. Initializing the network component webservice in Mathematica. 
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Figure 6. Network topology and visualization 
of the shortest path (thick line) function in 
Mathematica's Combinatorica package. The 
vertical bars at right are a typical Mathematica 
layout feature. 
 

To illustrate this, we have experimented with imple-

mentations of VNS to facilitate an interface with 

Mathematica [17] on basis of webservice technologies. 

The Virtualized Network Service described in section 

4.1 was the result. Figure 6 shows a network topology 

drawn by Mathematica. Figure 7 and Figure 8 illus-

trates the apparent ease of the use of VNS by Mathe-

matica.  

 
Figure 7. Initializing the network component 
webservice in Mathematica 
 

 
Figure 8. NE discovery in Mathematica 

 

This combination of Mathematica and UPVN shows a 

glimpse of entirely new networked applications. It il-

lustrates also the enormous wealth of mathematical, 

computational and visualization tools that can be 

unlocked for specific applications using generic tech-
nologies made available via Grid and webservice in-

terfaces. 
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the application developer to develop algorithms that 

satisfy particular purposes. Using flow calculations on 

basis of actual and near real time data, one can judge 
how much network capacity is unused. For instance, 
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Figure 9. Example of path provisioning in 
UPVN. 
 

Figure 9 shows the determination of a shortest path 

with Mathematica’s ShortestPath function from 

the Combinatorica package. Since our NEs support 

transaction services, one can write applications where 

the reservation of a path elements, a video movie and a 

pizza is committed if all of them are available in a 
given period! 

Figure 9 shows also a Mathematica code snippet 

that invokes a transaction to claim all nodes along a 

shortest path. The transaction is successful if al key 

provisioned nodes decode the token “Green”. One part 

of this token has been left on the node as a proof of a 

successful negotiation of AAA matters [11] for specific 

AC packet services with the owner of the NE. 

Developments like these bring the powerful facilities 

of transaction monitors like CICS [18] in the realm of 

applications that create application specific paths on 
nation wide network infrastructures for special pur-

poses. 

In the case of OSI and IP protocols, algorithms on 

routers take care of proper forwarding of packets. In 

case of failures, the routing protocols automatically 

nodePath = 
ConvertIndicesToNodes[ShortestPath[g,Node2Index[nids,"192
.168.3.4"],Node2Index[nids,"139.63.77.49"]], nids]; 
Print["Path: ", nodePath]; 
If[NetworkTokenTransaction[nodePath, "green"]==True, 
Print["Committed"], Print["Transaction failed"]]; 
 
Path: 
{192.168.3.4,192.168.3.1,139.63.77.30,139.63.77.49} 
 
Committed 

n = GetAllElements[]; 
e = GetAllLinks[]; 
nids = Apply[Union,e]; 
Print["Network elements: ", n]; 
Print["Number of ports found: ", Length[nids]];  
 
Network elements: {bigvirdot,virdot} 
 
Number of ports found: 16 

Needs["WebServices`"] 
<<DiscreteMath`Combinatorica` 
<<DiscreteMath`GraphPlot` 
Print["The following methods are available from the  
NetworkComponent:",InstallService["http:// 
    localhost:3000/network_service/service.wsdl"]]; 
The following methods are available from the 
NetworkComponent: 
{GetAllLinks,GetAllElements,NetworkTokenTransaction} 
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have to be used to find them. 

 

5. UPVN Applications 
 

In UPVN, applications might be distributed, but they 

will act as a single entity. Once the virtualized network 

is created, it is available to application developers in 

the form of NCs, probably implemented as objects. 

Then, decades of progress in computer sciences can be 

applied immediately to create new network aware and 

network centric applications.  
 

 
Figure 6. Network topology and visualization 
of the shortest path (thick line) function in 
Mathematica's Combinatorica package. The 
vertical bars at right are a typical Mathematica 
layout feature. 
 

To illustrate this, we have experimented with imple-

mentations of VNS to facilitate an interface with 

Mathematica [17] on basis of webservice technologies. 

The Virtualized Network Service described in section 

4.1 was the result. Figure 6 shows a network topology 

drawn by Mathematica. Figure 7 and Figure 8 illus-

trates the apparent ease of the use of VNS by Mathe-

matica.  

 
Figure 7. Initializing the network component 
webservice in Mathematica 
 

 
Figure 8. NE discovery in Mathematica 

 

This combination of Mathematica and UPVN shows a 

glimpse of entirely new networked applications. It il-

lustrates also the enormous wealth of mathematical, 

computational and visualization tools that can be 

unlocked for specific applications using generic tech-
nologies made available via Grid and webservice in-

terfaces. 

 

5.1. Paths and applications 
 

A whole body of graph theory is at the disposal of 

the application developer to develop algorithms that 

satisfy particular purposes. Using flow calculations on 

basis of actual and near real time data, one can judge 
how much network capacity is unused. For instance, 

with a uniform cost search algorithm, it is straightfor-

ward to develop an application that finds a least cost 

route, with a minimum bandwidth guarantee. More 

sophisticated algorithms allow faster results and faster 

run time, albeit requiring more understanding from the 

application developer.  

  

Figure 9. Example of path provisioning in 
UPVN. 
 

Figure 9 shows the determination of a shortest path 

with Mathematica’s ShortestPath function from 

the Combinatorica package. Since our NEs support 

transaction services, one can write applications where 

the reservation of a path elements, a video movie and a 

pizza is committed if all of them are available in a 
given period! 

Figure 9 shows also a Mathematica code snippet 

that invokes a transaction to claim all nodes along a 

shortest path. The transaction is successful if al key 

provisioned nodes decode the token “Green”. One part 

of this token has been left on the node as a proof of a 

successful negotiation of AAA matters [11] for specific 

AC packet services with the owner of the NE. 

Developments like these bring the powerful facilities 

of transaction monitors like CICS [18] in the realm of 

applications that create application specific paths on 
nation wide network infrastructures for special pur-

poses. 

In the case of OSI and IP protocols, algorithms on 

routers take care of proper forwarding of packets. In 

case of failures, the routing protocols automatically 

nodePath = 
ConvertIndicesToNodes[ShortestPath[g,Node2Index[nids,"192
.168.3.4"],Node2Index[nids,"139.63.77.49"]], nids]; 
Print["Path: ", nodePath]; 
If[NetworkTokenTransaction[nodePath, "green"]==True, 
Print["Committed"], Print["Transaction failed"]]; 
 
Path: 
{192.168.3.4,192.168.3.1,139.63.77.30,139.63.77.49} 
 
Committed 

n = GetAllElements[]; 
e = GetAllLinks[]; 
nids = Apply[Union,e]; 
Print["Network elements: ", n]; 
Print["Number of ports found: ", Length[nids]];  
 
Network elements: {bigvirdot,virdot} 
 
Number of ports found: 16 

Needs["WebServices`"] 
<<DiscreteMath`Combinatorica` 
<<DiscreteMath`GraphPlot` 
Print["The following methods are available from the  
NetworkComponent:",InstallService["http:// 
    localhost:3000/network_service/service.wsdl"]]; 
The following methods are available from the 
NetworkComponent: 
{GetAllLinks,GetAllElements,NetworkTokenTransaction} 
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net, nor to the network of NEs. For applications to interact with NEs like 10 and 11, 
some other means have to be used to find them. 

2.5 UPVN Applications 

In UPVN, applications might be distributed, but they will act as a single entity. 
Once the virtualized network is created, it is available to application developers in 
the form of NCs, probably implemented as objects. Then, decades of progress in 
computer sciences can be applied immediately to create new network aware and 
network centric applications. To illustrate this, we have experimented with imple-
mentations of VNS to facilitate an interface with Mathematica [75] on basis of web 
service technologies. The Virtualized Network Service described in Section 2.4.1 
was the result. Figure 14 shows a network topology drawn by Mathematica. Figure 
15 and Figure 16 illustrate the apparent ease of the use of VNS by Mathematica. 
With such an arrangement an enormous wealth of mathematical, computational and 
visualization software can be applied to solve application specific network issues. 

 
Figure 14. Network topology and visualization of the shortest path (thick line) function in Math-
ematica's Combinatorica package. 

 

 
Figure 15. Initializing the network component webservice in Mathematica. 
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Figure 6. Network topology and visualization 
of the shortest path (thick line) function in 
Mathematica's Combinatorica package. The 
vertical bars at right are a typical Mathematica 
layout feature. 
 

To illustrate this, we have experimented with imple-

mentations of VNS to facilitate an interface with 

Mathematica [17] on basis of webservice technologies. 

The Virtualized Network Service described in section 

4.1 was the result. Figure 6 shows a network topology 

drawn by Mathematica. Figure 7 and Figure 8 illus-

trates the apparent ease of the use of VNS by Mathe-

matica.  

 
Figure 7. Initializing the network component 
webservice in Mathematica 
 

 
Figure 8. NE discovery in Mathematica 
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lustrates also the enormous wealth of mathematical, 

computational and visualization tools that can be 

unlocked for specific applications using generic tech-
nologies made available via Grid and webservice in-
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ward to develop an application that finds a least cost 

route, with a minimum bandwidth guarantee. More 

sophisticated algorithms allow faster results and faster 

run time, albeit requiring more understanding from the 

application developer.  

  

Figure 9. Example of path provisioning in 
UPVN. 
 

Figure 9 shows the determination of a shortest path 

with Mathematica’s ShortestPath function from 

the Combinatorica package. Since our NEs support 

transaction services, one can write applications where 

the reservation of a path elements, a video movie and a 

pizza is committed if all of them are available in a 
given period! 

Figure 9 shows also a Mathematica code snippet 

that invokes a transaction to claim all nodes along a 

shortest path. The transaction is successful if al key 

provisioned nodes decode the token “Green”. One part 

of this token has been left on the node as a proof of a 

successful negotiation of AAA matters [11] for specific 

AC packet services with the owner of the NE. 

Developments like these bring the powerful facilities 

of transaction monitors like CICS [18] in the realm of 

applications that create application specific paths on 
nation wide network infrastructures for special pur-

poses. 

In the case of OSI and IP protocols, algorithms on 

routers take care of proper forwarding of packets. In 

case of failures, the routing protocols automatically 

nodePath = 
ConvertIndicesToNodes[ShortestPath[g,Node2Index[nids,"192
.168.3.4"],Node2Index[nids,"139.63.77.49"]], nids]; 
Print["Path: ", nodePath]; 
If[NetworkTokenTransaction[nodePath, "green"]==True, 
Print["Committed"], Print["Transaction failed"]]; 
 
Path: 
{192.168.3.4,192.168.3.1,139.63.77.30,139.63.77.49} 
 
Committed 

n = GetAllElements[]; 
e = GetAllLinks[]; 
nids = Apply[Union,e]; 
Print["Network elements: ", n]; 
Print["Number of ports found: ", Length[nids]];  
 
Network elements: {bigvirdot,virdot} 
 
Number of ports found: 16 

Needs["WebServices`"] 
<<DiscreteMath`Combinatorica` 
<<DiscreteMath`GraphPlot` 
Print["The following methods are available from the  
NetworkComponent:",InstallService["http:// 
    localhost:3000/network_service/service.wsdl"]]; 
The following methods are available from the 
NetworkComponent: 
{GetAllLinks,GetAllElements,NetworkTokenTransaction} 
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the application developer to develop algorithms that 
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basis of actual and near real time data, one can judge 
how much network capacity is unused. For instance, 

with a uniform cost search algorithm, it is straightfor-

ward to develop an application that finds a least cost 

route, with a minimum bandwidth guarantee. More 

sophisticated algorithms allow faster results and faster 

run time, albeit requiring more understanding from the 

application developer.  

  

Figure 9. Example of path provisioning in 
UPVN. 
 

Figure 9 shows the determination of a shortest path 

with Mathematica’s ShortestPath function from 

the Combinatorica package. Since our NEs support 

transaction services, one can write applications where 

the reservation of a path elements, a video movie and a 

pizza is committed if all of them are available in a 
given period! 

Figure 9 shows also a Mathematica code snippet 

that invokes a transaction to claim all nodes along a 

shortest path. The transaction is successful if al key 

provisioned nodes decode the token “Green”. One part 

of this token has been left on the node as a proof of a 

successful negotiation of AAA matters [11] for specific 

AC packet services with the owner of the NE. 

Developments like these bring the powerful facilities 

of transaction monitors like CICS [18] in the realm of 

applications that create application specific paths on 
nation wide network infrastructures for special pur-

poses. 

In the case of OSI and IP protocols, algorithms on 

routers take care of proper forwarding of packets. In 

case of failures, the routing protocols automatically 

nodePath = 
ConvertIndicesToNodes[ShortestPath[g,Node2Index[nids,"192
.168.3.4"],Node2Index[nids,"139.63.77.49"]], nids]; 
Print["Path: ", nodePath]; 
If[NetworkTokenTransaction[nodePath, "green"]==True, 
Print["Committed"], Print["Transaction failed"]]; 
 
Path: 
{192.168.3.4,192.168.3.1,139.63.77.30,139.63.77.49} 
 
Committed 

n = GetAllElements[]; 
e = GetAllLinks[]; 
nids = Apply[Union,e]; 
Print["Network elements: ", n]; 
Print["Number of ports found: ", Length[nids]];  
 
Network elements: {bigvirdot,virdot} 
 
Number of ports found: 16 

Needs["WebServices`"] 
<<DiscreteMath`Combinatorica` 
<<DiscreteMath`GraphPlot` 
Print["The following methods are available from the  
NetworkComponent:",InstallService["http:// 
    localhost:3000/network_service/service.wsdl"]]; 
The following methods are available from the 
NetworkComponent: 
{GetAllLinks,GetAllElements,NetworkTokenTransaction} 
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Figure 16. NE discovery in Mathematica.  

2.5.1 Paths and applications 

A whole body of graph theory is at the disposal of the application developer to 
develop algorithms that satisfy particular purposes. Using flow calculations on ba-
sis of actual and near real time data, one can judge how much network capacity is 
unused. For instance, with a uniform cost search algorithm, it is straightforward to 
develop an application that finds a least cost route, with a minimum bandwidth 
guarantee. More sophisticated algorithms allow faster results and faster run time, 
albeit requiring more understanding from the application developer. Figure 17 
shows the determination of a shortest path with Mathematica’s ShortestPath func-
tion from the Combinatorica package. 

Since our NEs support transaction services, one can write applications where the 
reservation of a path elements, a video movie and a pizza is committed if all of 
them are available in a given period! Figure 17 shows also a Mathematica code 
snippet that invokes a transaction to claim all nodes along a shortest path. The 
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AAA matters [70] for specific AC packet services with the owner of the NE. 
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run time, albeit requiring more understanding from the 
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Figure 9. Example of path provisioning in 
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Figure 9 shows the determination of a shortest path 

with Mathematica’s ShortestPath function from 

the Combinatorica package. Since our NEs support 

transaction services, one can write applications where 

the reservation of a path elements, a video movie and a 

pizza is committed if all of them are available in a 
given period! 

Figure 9 shows also a Mathematica code snippet 

that invokes a transaction to claim all nodes along a 

shortest path. The transaction is successful if al key 

provisioned nodes decode the token “Green”. One part 

of this token has been left on the node as a proof of a 

successful negotiation of AAA matters [11] for specific 

AC packet services with the owner of the NE. 

Developments like these bring the powerful facilities 

of transaction monitors like CICS [18] in the realm of 

applications that create application specific paths on 
nation wide network infrastructures for special pur-

poses. 

In the case of OSI and IP protocols, algorithms on 

routers take care of proper forwarding of packets. In 

case of failures, the routing protocols automatically 

nodePath = 
ConvertIndicesToNodes[ShortestPath[g,Node2Index[nids,"192
.168.3.4"],Node2Index[nids,"139.63.77.49"]], nids]; 
Print["Path: ", nodePath]; 
If[NetworkTokenTransaction[nodePath, "green"]==True, 
Print["Committed"], Print["Transaction failed"]]; 
 
Path: 
{192.168.3.4,192.168.3.1,139.63.77.30,139.63.77.49} 
 
Committed 

n = GetAllElements[]; 
e = GetAllLinks[]; 
nids = Apply[Union,e]; 
Print["Network elements: ", n]; 
Print["Number of ports found: ", Length[nids]];  
 
Network elements: {bigvirdot,virdot} 
 
Number of ports found: 16 

Needs["WebServices`"] 
<<DiscreteMath`Combinatorica` 
<<DiscreteMath`GraphPlot` 
Print["The following methods are available from the  
NetworkComponent:",InstallService["http:// 
    localhost:3000/network_service/service.wsdl"]]; 
The following methods are available from the 
NetworkComponent: 
{GetAllLinks,GetAllElements,NetworkTokenTransaction} 
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	 Since our NEs support transaction services, one can write applications where the reserva-
tion of a path elements, a video movie and a pizza is committed if all of them are available in 
a given period! Figure 17 shows also a Mathematica code snippet that invokes a transaction 
to claim all nodes along a shortest path. The transaction is successful if al key provisioned 
nodes decode the token “Green”. One part of this token has been left on the node as a proof 
of a successful negotiation of AAA matters [70] for specific AC packet services with the 
owner of the NE.
	 Such developments bring the powerful facilities of transaction monitors like CICS [76] 
in the realm of applications that create application specific paths on nation wide network 
infrastructures for special purposes.

Figure 17. Example of path provisioning in UPVN.

	 In the case of OSI and IP protocols, algorithms on routers take care of proper forwarding 
of packets. In case of failures, the routing protocols automatically find alternative routes, if 
they exist. IP routing is reactive, it responds to a change. In IP networks a routing reconfigu-
ration as a response to a failing router can cost many seconds. For VoIP applications this 
would result in noticeable effects. In UPVN, applications are aware of the network state and 
can anticipate problematic situations. ACs in NEs could careful test and monitor the health 
of a single or a group of NEs (e.g. along a path) to the point that a malfunction is detected 
before or immediately after it occurs. Applications could then instruct NEs to change their 
routing tables and their routing policies to forward packets along alternative paths, if they 
exist, that satisfy application needs. Furthermore, by a modification² of the uniform cost 
algorithm, one can easily find (if they exist) the least cost N alternate path’s between a given 
source and destination, yielding another strategy to find robust path’s. In sensor networks 
the alternate path method not only adds to the reliability of sensor telecommunications, 
but also distributes the power consumption more equally over the nodes. This is, in many 
cases, a good strategy to increase the deployment time of the sensor infrastructure that uses 
batteries.

² Find the least cost path by the uniform cost method. Remove all NEs present in the least cost path between 

source and destination from the search input. Rerun the algorithm to find the next least cost path.
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Figure 17. Example of path provisioning in UPVN. 

Such developments bring the powerful facilities of transaction monitors like 
CICS [76] in the realm of applications that create application specific paths on na-
tion wide network infrastructures for special purposes. 

In the case of OSI and IP protocols, algorithms on routers take care of proper 
forwarding of packets. In case of failures, the routing protocols automatically find 
alternative routes, if they exist. IP routing is reactive, it responds to a change. In IP 
networks a routing reconfiguration as a response to a failing router can cost many 
seconds. For VoIP applications this would result in noticeable effects. In UPVN, 
applications are aware of the network state and can anticipate problematic situa-
tions. ACs in NEs could careful test and monitor the health of a single or a group of 
NEs (e.g. along a path) to the point that a malfunction is detected before or imme-
diately after it occurs. Applications could then instruct NEs to change their routing 
tables and their routing policies to forward packets along alternative paths, if they 
exist, that satisfy application needs. Furthermore, by a modification2 of the uniform 
cost algorithm, one can easily find (if they exist) the least cost N alternate path’s 
between a given source and destination, yielding another strategy to find robust 
path’s. In sensor networks the alternate path method not only adds to the reliability 
of sensor telecommunications, but also distributes the power consumption more 
equally over the nodes. This is, in many cases, a good strategy to increase the de-
ployment time of the sensor infrastructure that uses batteries. 

                                                        
2Find the least cost path by the uniform cost method. Remove all NEs present in the least cost path 
between source and destination from the search input. Rerun the algorithm to find the next least cost 
path. 
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matica.  
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This combination of Mathematica and UPVN shows a 

glimpse of entirely new networked applications. It il-

lustrates also the enormous wealth of mathematical, 

computational and visualization tools that can be 

unlocked for specific applications using generic tech-
nologies made available via Grid and webservice in-

terfaces. 

 

5.1. Paths and applications 
 

A whole body of graph theory is at the disposal of 

the application developer to develop algorithms that 

satisfy particular purposes. Using flow calculations on 

basis of actual and near real time data, one can judge 
how much network capacity is unused. For instance, 

with a uniform cost search algorithm, it is straightfor-

ward to develop an application that finds a least cost 

route, with a minimum bandwidth guarantee. More 

sophisticated algorithms allow faster results and faster 

run time, albeit requiring more understanding from the 

application developer.  

  

Figure 9. Example of path provisioning in 
UPVN. 
 

Figure 9 shows the determination of a shortest path 

with Mathematica’s ShortestPath function from 

the Combinatorica package. Since our NEs support 

transaction services, one can write applications where 

the reservation of a path elements, a video movie and a 

pizza is committed if all of them are available in a 
given period! 

Figure 9 shows also a Mathematica code snippet 

that invokes a transaction to claim all nodes along a 

shortest path. The transaction is successful if al key 

provisioned nodes decode the token “Green”. One part 

of this token has been left on the node as a proof of a 

successful negotiation of AAA matters [11] for specific 

AC packet services with the owner of the NE. 

Developments like these bring the powerful facilities 

of transaction monitors like CICS [18] in the realm of 

applications that create application specific paths on 
nation wide network infrastructures for special pur-

poses. 

In the case of OSI and IP protocols, algorithms on 

routers take care of proper forwarding of packets. In 

case of failures, the routing protocols automatically 

nodePath = 
ConvertIndicesToNodes[ShortestPath[g,Node2Index[nids,"192
.168.3.4"],Node2Index[nids,"139.63.77.49"]], nids]; 
Print["Path: ", nodePath]; 
If[NetworkTokenTransaction[nodePath, "green"]==True, 
Print["Committed"], Print["Transaction failed"]]; 
 
Path: 
{192.168.3.4,192.168.3.1,139.63.77.30,139.63.77.49} 
 
Committed 

n = GetAllElements[]; 
e = GetAllLinks[]; 
nids = Apply[Union,e]; 
Print["Network elements: ", n]; 
Print["Number of ports found: ", Length[nids]];  
 
Network elements: {bigvirdot,virdot} 
 
Number of ports found: 16 

Needs["WebServices`"] 
<<DiscreteMath`Combinatorica` 
<<DiscreteMath`GraphPlot` 
Print["The following methods are available from the  
NetworkComponent:",InstallService["http:// 
    localhost:3000/network_service/service.wsdl"]]; 
The following methods are available from the 
NetworkComponent: 
{GetAllLinks,GetAllElements,NetworkTokenTransaction} 
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2.5.2  Topology changing applications

In some applications, topology is a concern and application programs have to deal with 
this. Once some or all NEs are known, one is indulged to make a map of their topology. 
However, we do not expect programmers to write programs for specific topologies. The ap-
plication designer mostly does not, and cannot have detailed knowledge of the network. Ap-
plication programmers rarely construct networks. In the case of wireless sensor networks, 
optimal application topologies may vary constantly.
	 In the previous section, we have shown how NEs in a network can be found, how path’s 
can be established in an optimal way and elaborated on strategies by which applications 
can maintain a certain service level from one or more paths between source and destination. 
There is another situation, one that we explicitly want to deal with, in which application 
developers are not aware of the actual network topology. This situation occurs frequently in 
wireless sensor networks where nodes continuously join and leave the network during ap-
plication run time. As an example, consider a situation in which the occurrences of articula-
tion vertices, a single node whose failure can isolate part of the network, are unwanted. The 
Mathematica program listed in Figure 18 finds these vertices with the function Articu-
lationVertices from the Combinatorica package. If sensor NEs would have the ability 
to create new connections, e.g. by increasing the emitting power of its transmitter or by 
adjusting the directional sensitivity of its antenna, the NEs could be instructed to change 
these parameters until Mathematica calculates that articulation vertices have disappeared.

Figure 18. Mathematica’s detection of articulation vertices.

2.6  Application Configurations

Until now we did not elaborate on where the applications run. A very plausible configura-
tion is one in which the (distributed) application connects via the NCs to the NEs. At this 
point we say that the application is external to the network.
	 The NCs may only be available on the NE. Therefore the application itself must then be 
contained in the NEs. In the special case of a single application, it has to travel from NE to 
NE to interact with each NC; the application becomes an agent [64]. Traveling here is the 
process where the NE sends to another NE the application code and the persisted state of 
the application. VMware has the ability to freeze an entire operating system with running 
applications and to send the frozen system to another computer. There the execution of 
operating system and everything it runs is continued. In collaboration with Nortel, we dem-
onstrated this ability at Super Computing 2005 [77] by moving a Linux operating system, 
running a picture database search application, between computers located in Amsterdam, 
Chicago and in San Diego.
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2.5.2 Topology changing applications 

In some applications, topology is a concern and application programs have to 
deal with this. Once some or all NEs are known, one is indulged to make a map of 
their topology. However, we do not expect programmers to write programs for spe-
cific topologies. The application designer mostly does not, and cannot have detailed 
knowledge of the network. Application programmers rarely construct networks. In 
the case of wireless sensor networks, optimal application topologies may vary con-
stantly. 

In the previous section, we have shown how NEs in a network can be found, 
how path’s can be established in an optimal way and elaborated on strategies by 
which applications can maintain a certain service level from one or more paths be-
tween source and destination. There is another situation, one that we explicitly want 
to deal with, in which application developers are not aware of the actual network 
topology. This situation occurs frequently in wireless sensor networks where nodes 
continuously join and leave the network during application run time. As an exam-
ple, consider a situation in which the occurrences of articulation vertices, a single 
node whose failure can isolate part of the network, are unwanted. The Mathematica 
program listed in Figure 18 finds these vertices with the function Articulation-
Vertices from the Combinatorica package. If sensor NEs would have the ability to 
create new connections, e.g. by increasing the emitting power of its transmitter or 
by adjusting the directional sensitivity of its antenna, the NEs could be instructed to 
change these parameters until Mathematica calculates that articulation vertices have 
disappeared. 

 
Figure 18. Mathematica’s detection of articulation vertices. 
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find alternative routes, if they exist. IP routing is reac-

tive, it responds to a change. In IP networks a routing 

reconfiguration as a response to a failing router can 

cost many seconds. For VoIP applications this would 

result in noticeable effects. In UPVN, applications are 

aware of the network state and can anticipate prob-
lematic situations. ACs in NEs could careful test and 

monitor the health of a single or a group of NEs (e.g. 

along a path) to the point that a malfunction is detected 

before or immediately after it occurs. Applications 

could then instruct NEs to change their routing tables 

and their routing policies to forward packets along al-

ternative paths, if they exist, that satisfy application 

needs. Furthermore, by a modification1 of the uniform 

cost algorithm, one can easily find (if they exist) the 

least cost N alternate path’s between a given source 

and destination, yielding another strategy to find robust 

path’s. In sensor networks the alternate path method 
not only adds to the reliability of sensor telecommuni-

cations, but also distributes the power consumption 

more equally over the nodes. This is, in many cases, a 

good strategy to increase the deployment time of the 

sensor infrastructure that uses batteries. 

 

5.2. Topology changing applications 
 

In some applications, topology is a concern and ap-
plication programs have to deal with this. Once some 

or all NEs are known, one is indulged to make a map 

of their topology. However, we do not expect program-

mers to write programs for specific topologies. The 

application designer mostly does not, and cannot have 

detailed knowledge of the network. Application pro-

grammers rarely construct networks. In the case of 

wireless sensor networks, optimal application topolo-

gies may vary constantly. To deal with networking is-

sues, application programmers develop rather algo-

rithms to deal with application specific network issues. 
In the previous section, we have shown how NEs in 

a network can be found, how path’s can be established 

in an optimal way and elaborated on strategies by 

which applications can maintain a certain service level 

from one or more paths between source and destina-

tion. There is another situation, one that we explicitly 

want to deal with, in which application developers are 

not aware of the actual network topology. This situa-

tion occurs frequently in wireless sensor networks 

where nodes continuously join and leave the network 

during application run time. As an example, consider a 

situation in which occurrences of articulation vertices, 
a single node whose failure can isolate part of the net-

                                                        
1 Find the least cost path by the uniform cost method. Remove all 

NEs present in the least cost path between source and destination 

from the search input. Rerun the algorithm to find the next least cost 

path.  

work, are unwanted. The Mathematica program listed 

in Figure 10 finds these vertices with the function Ar-
ticulationVertices from the Combina-
torica package.  

 

 
Figure 10. Mathematica’s detection of articula-
tion vertices. 
 

If sensor NEs would have the ability to create new 

connections, e.g. by increasing the emitting power of 

its transmitter or by adjusting the directional sensitivity 

of its antenna, the NEs could be instructed to change 

these parameters until Mathematica calculates that ar-

ticulation vertices have disappeared. 

 

6. Application configurations 
 

Until now we did not elaborate on where the appli-

cations run. A very plausible configuration is one in 

which the (distributed) application connects via the 

NCs to the NEs. At this point we say that the applica-

tion is external to the network.  

The NCs may only be available on the NE. There-

fore the application itself must then be contained in the 
NEs. In the special case of a single application, it has 

to travel from NE to NE to interact with each NC; the 

application becomes an agent [5]. Traveling here is the 

process where the NE sends to another NE the appli-

cation code and the persisted state of the application. 

VMware has the ability to freeze an entire operating 

system with running applications and to send the fro-

zen system to another computer. There the execution of 

operating system and everything it runs is continued. In 

collaboration with Nortel, we demonstrated this ability 

at SuperComputing 2005 [19] by moving a Linux 

operating system, running a picture database search 
application, between computers located in Amsterdam, 

Chicago and in San Diego.  

There are various ways to implement communica-

tions between the NC in an application and its NE. 

Clearly, in some situations one could design a separate 

network that prevents unwanted interactions of ACs 

with NC-NE communications. In other cases, such a 

separate network is not possible and one could use 

certain ACs to increase the reliability of NC-NE com-

munications. One could for instance design an AC that 

makes the transmission of information destined to ACs 
more reliable by implementing a logging and store-

and-forward mechanisms. Here one could copy some 

of the technologies message queuing deploys. With the 

use of tags containing secured tokens, the NE can dis-

cern the appropriate packets in the incoming streams 

ConvertIndicesToNodes[ArticulationVertices[g],nids]
 
{139.63.77.30,192.168.3.1}
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	 There are various ways to implement communications between the NC in an application 
and its NE. Clearly, in some situations one could design a separate network that prevents 
unwanted interactions of ACs with NC-NE communications. In other cases, such a separate 
network is not possible and one could use certain ACs to increase the reliability of NC-NE 
communications. One could for instance design an AC that makes the transmission of in-
formation destined to ACs more reliable by implementing a logging and store-and-forward 
mechanisms. Here one could copy some of the technologies message queuing deploys. 
With the use of tags containing secured tokens, the NE can discern the appropriate packets 
in the incoming streams easily. To this effect, NEs may fetch appropriate ACs such as per-
formed in discrete Active Networks [32].

2.7  Conclusion

UPVN shows that well-known concepts for programmable networks augmented with in-
sights from Grid leads to new and practical applications. UPVN applications can deal, by 
programming the NEs, optimally with changing Internet conditions.
	 The UPVN concept is foremost useful in situations where structural tuning of applica-
tions and network nodes is not feasible any more. Trivially this occurs when many NEs in 
many network domains are involved. Such situations occur also when networks and appli-
cations run close to their maximum capacities and financial budgets – continuous tuning 
is necessary. Furthermore, we showed UPVN to be equally useful in future mobile sensor 
network applications, where the communication facilities need to be tuned regularly to the 
changing state of the sensor nodes.
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This chapter presents the generalized Token Based Networking (gTBN) architecture, which 
enables dynamic binding of communities and their applications to specialized network 
services. gTBN uses protocol independent tokens to provide decoupling of authorization 
from time of usage as well as identification of network traffic. The tokenized traffic allows 
specialized software components uploaded into network elements to execute services spe-
cific to communities. A reference implementation of gTBN over IPv4 is proposed as well as 
the presentation of our experiments. These experiments include validation tests of our test 
bed with common grid applications such as GridFTP, OpenMPI, and VLC. In addition, we 
present a firewalling use case based on gTBN.

3.1  Introduction

Cooperation between organizations, institutes and individuals often means sharing net-
work resources, data processing and data dissemination facilities. Communities are a 
group of individuals, organizations or institutes that have an agreement about sharing ser-
vices and facilities, which are accessible only to its members. When user applications need 
to access and process data from various, possibly heterogeneous, systems and locations, 
we need to cope with application-specific connectivity, different access policies, and at the 
same time provide services bound to the community.
	 The following three scenarios illustrate community-based network services. First, many 
scientists are allowed to access worldwide digital libraries on behalf of their academic or-
ganization regardless of their location (network source address). Currently, this is only pos-
sible within the organizational domain. Second, large-scale experiments by scientific com-
munities require data gathering from multiple sources such as high-throughput sensors, 
lab equipment, followed by data processing on multiple Grids under different ownership. 
This needs infrastructure support for sharing computational, storage and networking re-
sources. Third, rules and laws of a country or organization may apply to communities of 
which their members are located worldwide and interconnected over public and private 
networks and hence, the network has to guarantee separation of these communities to sup-
port judicial territories. The three examples all require a form of traffic identification and 
control to provide specific services. However, the current Internet model offers only best-
effort end-to-end connectivity.
	 In this chapter, we address network support for binding specialized, application-specific 
services to communities and their applications.
	 An alternative to the Internet model is programmable networks. In programmable net-
works, network elements become fully programmable devices. By programming the col-
lection of network elements a network can offer specific services, and implement any form 
of traffic identification and control. Efforts in programmable networks have led to frame-
works, such as integrated and discrete active networks [78], and among others resulted in 
test beds like Tempest [79], Switchware [80] and Capsules [32]. Although less flexible, 
optical and hybrid networking technologies (e.g., UCLPv2 [20], GMPLS) are now pre-
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ferred over programmable network solutions to provide application controlled end-to-end 
connectivity. Alternative to current programmable network projects such as GENI [81], 
OpenFlow [22] offers a pragmatic, intermediate solution based on flows to allow research-
ers to experiment with new network services and communication protocols, and also have 
vendor support. While programmable network architectures in general follow a network 
centric approach, the User programmable Virtualized Networks (UPVN) [82] architec-
tural framework takes an application centric approach by allowing network ser- vices to be 
defined by distributed and networked applications themselves. The UPVN architectural 
framework considers the network and its services as software, and defines the elementary 
components to develop specialized services from applications.
	 In this thesis, we propose an architecture, generalized Token Based Networking (gTBN), 
that provides binding between distributed networked applications and programmable 
network services. gTBN uses the concept of Token Based Network- ing [83] to associate 
streams with UPVN services by tagging packets with a service identifier. These identifiers 
are inserted in the process of network resource allocation and management and are inde-
pendent of communication protocols. We present a reference implementation of the gTBN 
architecture in IPv4 and a firewall use case as illustration of an alternative approach for 
domain protection in Grid networks. In a broader context, gTBN allows communities to 
define their own personal Inter- net providing network services that match their require-
ments.
	 The remainder of this chapter is organized as follows. The gTBN architecture is presented 
in Section 3.2, followed by implementation details in Section 3.3. We evaluate a firewall 
use case for Grids and show the results of our experiments with streaming, client/server 
and message passing applications in Section 3.4. In Section 3.5, related work in the field 
is compared and discussed, followed by the conclusions in the last section.

3.2  gTBN Architecture

The Token Based Networking (TBN) architecture was initially introduced to establish light 
paths over multiple network domains [83]. Light paths are setup on behalf of authorized 
applications that need to bypass transit networks. On the one hand, TBN uses a secure 
signature of pieces of an IP packet as a token that is placed inside the packet to recognize 
and authenticate traffic. The applications traffic is first tokenized by the TokenBuilder of 
a local domain (e.g., a campus network), after which it is enforced by the TokenSwitch at 
each inter-domain controller along the end-to-end path (see Figure 19). On the other hand, 
TBN makes use of a separate service and control plane. The control plane consists of a AAA 
server in the push sequence as explained by the Authorization Authentication Accounting 
(AAA) framework (RFC 2904). The AAA server acts as an authority that is responsible for 
the reservation and provisioning of the end-to-end paths, possibly spanning multiple net-
work domains.
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Figure 19. On behalf of an application, the AAA authority provisions the network resources required 

for an end-to-end light path that may cross multiple domains. At runtime, the application traffic is 

first tokenized by TokenBuilder and then subsequently enforced by each TokenSwitch along the 

light path.

	 Making tokens protocol independent has an important advantage; the token can be re-
garded as an aggregation identifier to a network service. Generally, we see four types of 
aggregation identifiers that can be combined, as follows:

	 ·  	 Identifier to point a service to the NE (e.g., a multi-cast, or transcoding), 

	 ·  	 Identifier that defines the service consumer (e.g., the grid application),

	 ·  	 Identifier that defines the serviced object (e.g., the network stream),

	 ·  	 Identifier that defines the QoS (security, authorization, robustness, deterministic 
		  property, etc.). 

First, a token can bind to different semantics and services (e.g., network services for a user, 
a group of users, or an institute). The semantics that is referred to by a token (e.g., a certain 
routing behavior) can be hard-coded into a switch or the token can refer to a stored aggre-
gation identifier that points at the specific behavior in a programmable network device. 
Hence, a token provides a generic way to match applications to their associated network 
services. Second, tokens can be either embedded in the application generated traffic or 
encapsulated in protocols where embedding is not supported, such as in public networks. 
Third, tokens can also provide a general type of trusted and cryptographically protected 
proof of authorization with flexible usage policies.
	 The gTBN architecture consists of three parts, as illustrated in Figure 20. First, each com-
munity with specific policies and rules needs to be associated with a token (1). A third 
party implements the negotiation, filtering and reservation of the resources and services 
using a AAA framework. The implementation of this entity depends on the context, such as 
resource brokers in Grids or network operators in private networks. Second, specialized net-
work services (e.g., routing, transcoding) for a community are provisioned in the network 
as required by the applications through their associated tokens. Because the network can-
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not know in advance which services or combination of services a community may require, 
specialized services must be uploaded to a network as ACs (2). Last, when a member of a 
specific community executes an application, the member or its secure execution environ-
ment tokenizes the produced traffic (3). The network recognizes the tokenized traffic and 
applies the specialized pre-programmed services.

Figure 20. Applications from a community are associated with tokens according to existing poli-

cies (1). A third party manages the network resources and provisions the required services into the 

NEs (2). At runtime, tokenized traffic sent by applications is recognized and authenticated by the 

network (3).

Figure 21. Application 1 can communicate with Application 2 in community B by using the as-

sociated token. To communicate with Application 3, the message needs to contain both tokens of 

communities A and B.

	 Figure 21 shows an example application of gTBN. Two communities with its member 
applications are located on different network domains. For example, Application 1 and 
2 belong to community B, and Application 3 belongs to community A. The two commu-
nities are each associated with a token, gray and white, respectively. Let us assume that 

NENE

ACAC

3rd PartyCommunity

Specialized
Network
Service

Policies
and RulesApplication

Negotiate
Service

Token

ACAC

1

2

3

Community A

Community B
App 1

App 2

App 3

+

GW

GW



48

the policy of a network domain is that only members of the communities may be routed 
through the network. Application 1 and Application 2 are both members of community 
B and therefore, they can communicate. Correctly tokenized traffic will be routed using 
default IP mechanisms. However, to communicate with Application 3, Application 1 also 
needs credentials to access the resources of community A. gTBN supports binding of mul-
tiple domain-specific services into a single token. This allows a member of both communi-
ties A and B to access each other’s network domains.

3.3  Implementation

The complete architecture is composed of three components, as previously presented in 
Section 3.2 and 20. The first component is a programmable network element that imple-
ments the network behavior by recognizing the authenticity of the tokenized traffic. En-
forcing the authenticity of tokens ensures the correct execution of the intended network 
behavior (see Section 3.3.1). The second component runs on the end-user host and binds 
the token to the application’s traffic (see Section 3.3.2). The third component, which is be-
yond the scope of this thesis, associates a token to the policies applied to the communities; 
interested readers are referred to [84].
	 Currently, our implementation binds application’s traffic to tokens at the IP layer, and 
enforces the tokenized traffic at the IP layer, too. It is important to notice that according to 
the RFC 791 the IP option field, we used for tagging, must be implemented by all IP mod-
ules. However, in practice we found that the RFC is not respected by all Internet routers. In 
a future implementation, though, we will put the tags into an IPv6 extension header.

3.3.1   Programmable Network Element

Our implementation of the network elements (NEs), called Token Based Switch (TBS), 
must be able to enforce specific network behavior (e.g., routing, multicast) on per-packet 
basis as required by the tokens the packets carry. Currently, it is possible to implement such 
programmable NEs using specialized hardware (e.g., network processors, FPGAs) or using 
powerful PCs. We have chosen to use the network processors because we think that such 
packet enforcement systems, working at the Ethernet layer, will be located at the gateways 
of the network domains and hence, they need to process packets at multi-gigabit speeds. 
For example, Intel IXP2850 network processor provides high-speed packet handling (up 
to 10Gbps) and on-chip crypto hardware supporting commonly used algorithms: 3DES, 
AES, SHA-1, HMAC. Although the current powerful PCs are able to route packets at multi-
gigabit speeds, they still lack of ability to perform cryptographic algorithms at line rates 
despite the multi-core architecture.
	 The current Token Based Switch (TBS) implementation uses the dual network proces-
sors hardware platform (see Figure 22). Each NPU contains on-chip 16 multi-threaded 
RISC μEngines running at 1.4GHz, a fast local memory, registers and two hardware crypto 
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units for encryption/decryption. The μEngines are highly-specialized processors designed 
for packet processing, each running independently from the others from private instruction 
stores of 8K instructions
	 As illustrated in Figure 22, the Ingress NPU receives incoming packets. These packets 
can be processed in parallel with the help of the μEngines. The packets are subsequently 
forwarded to the second NPU. The second NPU can process these packets and then decide 
which will be forwarded out of the box and which outgoing link will be used.

Figure 22. IXDP2850 development platform uses dual IXP2850 NPUs (1) and (2), 10×1 Gbps 

fiber interfaces (3), a loopback fabric interface (4), and fast data buses (SPI, CSIX). Each NPU has 

several external memories (SRAM, DRAM) and its own PCI bus for the control plane.

	 In the current implementation, the TBS uses an authentication application component 
(AC) combined with a routing network behavior. In other words, the specific routing ser-
vice run on each authenticated packet. A packet is authenticated when the built-in token 
(stored in the IPv4 option field) matches the result of applying a keyed Hash Message Au-
thentication Code (HMAC) algorithm over the entire IP packet, or over part of the packet. 
Our implementation uses the first 64 bytes of the packet to ensure constant speed process-
ing while the HMAC algorithm creates a one-way hash that is a key-dependent (see RFC 
2401). In our implementation we opted for a strong proof of authorization by means of 
HMAC-SHA1 that is also hardware supported by the IXP2850 network processor.
	 Figure 23 shows the token creation and checking mechanism. For each received packet, 
the TBS checks whether the current packet has the appropriate IP option field. On success, 
a Global Resource Identifier (GRI) field, identifying a specific application instance, is ex-
tracted (1) to refer to the network behavior needed to be applied to the packet. For example, 
the expected network behavior is authentication and hence, the GRI points to an authoriza-
tion table (AuthTable) of an already deployed authentication AC. Next, the authentication 
AC uses the GRI entry to retrieve the encryption key (TokenKey), already provisioned in the 
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TBS (2) by a AAA authority. Then, the first 64 bytes of the packet data are masked and then 
are encrypted using the HMAC-SHA1 with the TokenKey (3). The result is compared with 
the remaining of the option field. When they match, the authentication AC authorizes the 
packet to be forwarded to an adequate port. Otherwise, the packet is dropped. Note that 
although we refer to token as an entire tag built-in the packet, in our implementation, the 
tag consists of two parts: a plain-text aggregation identifier (GRI) and an encrypted token.
	 Summarizing, TBS is an implementation of application component (AC) inside program-
mable NE, which specifically performs packet authentication for access control at multi-
gigabit speeds. However, we mention future implementations of other ACs that will per-
form QoS for the purpose of providing deterministic communication in grid networks (e.g., 
processing physics experiment data), will assure multi-level security for military networks, 
will provide robustness in redundant networks.

Figure 23. The token checking mechanism uses the GRI part of IPoption tag to point into Auth-

Table of authentication component (1) in order to extract the TokenKey (2) needed to perform the 

HMAC-SHA1 over the masked packet data. The packet is authenticated when the encryption result 

matches the built- in token (3).

3.3.2  Binding token to applications

In our implementation, the binding of token to an application is done on a per-socket basis 
in order to offer the fine granularity requested by grid applications. Working at socket gran-
ularity allows binding distinct streams in the same application to distinct network services. 
In order to support the token insertion into the optional field of IPv4 packet it is needed to 
modify the vanilla Linux kernel (1). This modification exposes the token to socket binding 
mechanism through the setsockopt() function of the socket API.
	 From a practical point of view, it would not be accepted an approach where all the ap-
plications need to be modified and recompiled to benefit of a specific token based network 
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service. In order to provide seamlessness integration of gTBN we developed a middleware 
using an interposition system such as presented in [85]. An interposition system extends 
the default socket’s function without the need to recompile the application. However, mak-
ing an unique interposition system working for all imaginable application’s scenarios is not 
possible due to the large variety of socket’s usage mechanisms. To overcome this limitation 
we preferred to support different classes of interposition behavior, called hijackers. These 
hijackers are installed in the hosts and automatically selected at application start-up via a 
rule-matching algorithm. The matching algorithm allows users and grid administrators to 
finely tune how the applications’ traffic is tokenized by selecting the proper hijacker. We 
currently support the following entries in the selection rules: application name, domain, 
protocol, source/destination IP and port. The rules are checked on a per socket basis; when 
a rule matches the associated hijacker is started and bound to the socket. We have devel-
oped three different hijackers:

	 ·  	 Hijacker_tokeninjector, in which each socket that matches the activation rule is 
		  bound to a token unique for the application. The token is retrieved from an environ-
		  ment variable.

	 ·  	 Hijacker_simpletokenizer, in which each socket that matches the activation rule 
		  is bound to a token that is retrieved from a third party supervisor (see Section 3.4.2). 
		  The token is unique for a pair of source-IP/destination-IP. This hijacker supports a per-
		  node traffic management.

	 ·   	Hijacker_magiccarpet, in which each socket that matches the activation rule is 
		  bound to a token retrieved from a third party supervisor (e.g., a web-server). The token 
		  is unique for a pair of source-IP:port/destination-IP:port. Such a hijacker allows differ
		  entiating, at the networking level, the different data streams of one application; this 
		  behavior is needed in order to support FTP or GridFTP applications that may use dis-
		  tinct parallel socket streams.

The implementations of these three hijackers are used to evaluate several common applica-
tions used in grids, as shown in Section 3.4.2.

3.4  Evaluation and Usages

The validation of the approach follows a bottom-up pattern. First we evaluate the perfor-
mances of Token Based Switch (TBS), our current implementation of gTBN based on the 
IXP2850 network processor. Then we evaluate the robustness of the middleware by testing 
commonly used grid applications. In the end we present a use-case in which we applied 
gTBN to implement a domain firewalling solution for Grids.
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Figure 24. Test bed setup for testing TBS. 

Figure 25. Cross-domain communication between Das2-Das4 begins at 40s and ends at 300s. 

The traffic is successfully accepted and transmitted. Additionally, un-tokenized traffic is generated 

between 80s and 190s and dropped. 
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3.4.1  Token Based Switch benchmark

In order to benchmark our TBS implementation, we built a test bed, as illustrated in Figure 
24, composed of four hostPCs (das1 ... das4) interconnected through a TBS. We run the 
following scenario: das2 send tokenized traffic (generated by Iperf tool as shown in Figure 
25 (1) to das3 through the TBS and at the same time, das1 sends traffic to das4, but this 
traffic is not tokenized and hence, it is rejected by TBS (see Figure 25 (3)).
	 Such scenario simulates a case when external ‘un-authorized’ traffic tries to pass or over-
load a TBS. We measure the effects of such scenario by monitoring the throughput reported 
by Iperf tool on the tokenized traffic.
	 As shown in Figure 25 (2), there is no significant influence on the TBS throughput due 
to the injection of un-authorized traffic. We notice that we can increase the relevance of 
the evaluation by injecting ‘real’ traffic such as including random packet sizes, tokenized, 
un-tokenized, and invalid tokenized. While we could not perform such tests at the moment 
due to lack of professional traffic generators running at multi- gigabit speeds, in [83] we 
estimated the outcome by using the Intel’s cycle accurate IXP simulator. The bandwidth 
correctly processed by a TBS implemented on the dual IXDP2850 development platform 
is around 2.5 Gbps.

3.4.2   Interception middleware robustness

We evaluated the ability of our interposition environment to bind applications to tokens, 
implemented as described in Section 3.3.2, by investigating the behavior of different ap-
plications as regard to their socket behavior. We run the applications over the interposition 
system and checked with tcpdump tool that the applications have their traffic properly to-
kenized. We repeated the tests on a large panel of real- life classes of applications used in 
Grid: client-server, message passing, and data streaming, described as follows:

	 ·  	 client/server: A server waits for incoming connections and starts a user specific session 	
		  when a client connects to it. This behavior is typically met in case of file transfer ap-	
		  plications. The best way to support these kind of applications is to use the hijacker_	
		 magiccarpet as this hijacker is the only one capable to associate to each of the con-
		  nected client a unique token based on the  pair of end-point of the data channel. We 
		  success fully tested the following FTP servers: muddleFTP and vsFTP with the follow-
		  ing clients: netkit-FTP and gFTP. We also successfully tested the grid-ftp application 
		  from the Globus toolkit.

	 ·  	 message passing: Message passing libraries are important in grids as they provide a 
		  widely used distributed programming paradigm for scientific application. We used 
		  the hijacker_tokenin-jector to bind the token to each of the IPv4 sockets created 
		  by the OpenMPI library. By tagging the whole traffic of a distributed application we 
		  were  able to route the messages through reserved network links, thus providing guar-
		  antees on the quality of service.
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	 ·  	 streaming: The streaming applications, like video streaming or continuously reported 
		  data from sensors in live scientific experiment are seldom presented in grids due to 
		  the impossibility  guarantee on the quality of service of grids network. However, we 
		  experienced the VLC real- time video streaming software with the hijacker_
		 tokeninjector and Iperf for high ban width data streaming. Iperf was run with ‘-P’ 
		  option for the purpose to check the hijacker behavior with sockets used by a typical 
		  multi-threaded application.

All of these tests show that it is possible to deploy a working grid environment using a 
controllable interposition system as a network component (NC) proxy object between ap-
plications and network. The impact of this environment on the network performance of the 
applications is only visible during the socket creation and connection stage.

Figure 26. A firewall setup for grids.

3.4.3  Using gTBN for domain firewalling

It is common to have grids interconnected by high-speed backbones, but in many cases 
they also offer connectivity to Internet. In this case, it is necessary to use a protection mecha-
nism such as Firewalling, VPN, or dedicated connections to isolate and guard the clusters 
from undesired users.
	 As a use case, we describe a simpler solution to the existing firewall problem for grid appli-
cations (e.g., GridFTP) that open multiple ports dynamically and make difficult or impos-
sible to filter. Our solution based on gTBN is different from existing solutions by not using 
any protocol related information on the traffic that must pass the firewall, but it rather uses 
encrypted tokens built-in the packets based on which the packet is authenticated to pass the 
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	 Figure 26 shows the case of two distinct network domains where each is located behind 
a firewall being interconnected by a public network and dedicated connections (e.g. light 
paths). Each firewall consists of a TBS being provisioned by an authority: a web-server 
called supervisor. The test bed also includes four host machines interconnected as follows: 
three GridFTP clients located in one domain and one GridFTP server placed on the other 
domain.
	 The middleware we installed on all hosts uses the hijacker_magiccarpet interposition 
environment in order to tag the traffic of the GridFTP applications. When one host starts 
a GridFTP client application in order to connect to the GridFTP server, it first gets an au-
thorization ticket from the supervisor. The authorization ticket contains a unique identifier 
for the requested connection, the so-called Global Resource Identifier (GRI) as illustrated 
in Figure 23, and a TokenKey needed to encrypt part of each outgoing packet in order 
to obtain an encrypted token. Second, each outgoing packet that belongs to the socket(s) 
opened by the GridFTP application gets a tag. The tag is composed of two parts, which are 
concatenated as follows: (1) GRI and (2) the encrypted token obtained as a cryptographic 
result performed over the packet as shown in Figure 23. Next, traffic passing the TBSes is 
checked by looking at the tag each packet carries. If the packet is authenticated to pass the 
firewall, then it will go out to the provisioned path towards the GridFTP server. A similar 
scenario of traffic tokenizing happens on the way back from server to client. Note that when 
the supervisor received a request for path-setup from client to server, it has sent an authori-
zation ticket to all systems involved in the connection: both TBSes and server.
	 Using this test bed, we investigated the data flow and ensure that the un-tagged packets 
from one domain are rejected at the entry point of the other domain and hence, only an 
authorized application correctly bound to a token can enter into a foreign domain. This use 
case was presented in a live-demo at OGF23, 2008, in Spain as an alternative firewall so-
lution for grids that authenticates the traffic at the granularity of applications regardless of 
their distributed hosts. To our knowledge, such a fine-grain authentication is not possible 
using VPNs and is difficult to achieve with authenticating firewalls where the user applica-
tion must register its flows from all nodes beforehand.

3.5  Related Work

The need for access control, application-specific services, or QoS support for high perfor-
mance e-science applications has lead to programmable networks and, more recently, to 
high performance networks with advanced QoS and path configurability. We consider two 
main topics related to gTBN. First, current strategies and technologies to increase network 
flexibility within the existing TCP/IP models. Second, the history of programmable net-
works from active networks to programmability in ATM networks.
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3.5.1  Introducing Flexibility in Networks

Currently, there are several network control technologies to help in building network com-
munities at various network communication layers, some of which combining the flexibil-
ity of programmable networks with end-to-end provisioning. Furthermore, some recent 
hybrid solutions also offer cross-layer circuit provisioning. In order to refer the related work 
in our context, we categorize the existing network technologies with their control features 
in three classes: (1) embedded, (2) overlay, and (3) hybrid.
	 The embedded class consists of all network control mechanisms based on embedding 
specific information (e.g., tags, labels) into the traffic. One example of the embedded ap-
proach is Provider Backbone Traffic (PBT). PBT [86] is a VLAN-based solution enhanced 
to provide a good degree of control over a cluster network as well as on their interconnection 
backbones. Another example is Multi-protocol Label Switching (MPLS). MPLS was ini-
tially developed to speed up switching time by provisioning route decisions in advance, but 
is now widely used to establish support circuit switching on packet-routed networks, ad-
ditionally with traffic engineering. It may connect Ethernet or optical circuit-based clients 
with IP packet- switching clients. Moreover, amongst the latest achievements to support 
multi-domain networks based on a common policy system, the so-called generalized MPLS 
(gMPLS) has been developed.
	 The overlay class includes all technologies that offer network services by encapsulation 
over existing network technologies, such as IP. Virtual Private Networks (VPN) is a well-
known overlay solution to connect private networks or applications through public, untrust-
ed networks. (VPN) based solutions offer authenticated connections over IP. Furthermore, 
there were past attempts to build dynamic VPNs with fine-grained control down to the 
low-level network resources, such as the work in [17]. Another overlay network on top of IP, 
TOR [87], encrypts and obfuscates routing and connections for building an anonymous 
network.
	 The hybrid class contains solutions, which combine the existing technologies into one 
hybrid framework. Hybrid solutions try to achieve the advantages of both circuit switch-
ing and packet routing technologies. Examples of such solutions are, UCLPv2 [20], V-
STONES [88] and DRAGON [89].
	 Although the above-classified technologies provide network control and dynamic provi-
sioning of networks, they all limit to end-to-end connections. However, management of 
dynamic communities is a topic recently tried with MPLS-based VPNs in [90].
	 In addition to the three classes of control, the middleboxes in a data center (e.g., firewalls, 
load balancers) offer a different form of control. Firewalls protect private domains from 
malicious usage by filtering traffic, only allowing specific ports or types of connections. A 
firewall needs to be well instructed on the traffic it needs to pass or deny. This is specifically 
noticeable with packet filtering firewall and stateful firewall as they do block/allow access 
based on specific protocol-related information of the traffic (e.g. port numbers). In order 
to facilitate the users to bypass such firewalls several traversal techniques are implement-
ed in standard middleware like in [91]. Authenticated firewalls, such as NuFW [92] and 
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authpf [93], overcome some of the limitations of protocol based firewalls by introducing 
authentication prior to allowing access. We also notice a recent effort in building of more 
flexible and easier to deploy middleboxes by using a policy-aware switching layer (PLayer) 
[94]. PLayer implements the translated policies as specified by an administrator and con-
sists of specific routing tables and switch instructions. Although using PLayer in dedicated 
pswitches ensures the correctness of a certain possibly complex setup, this approach limits 
to an existent set of switch capabilities and still uses the complex traffic classification on 
checking various protocol header fields.

3.5.2  Programmability

Instead of providing flexibility within the context of TCP/IP, another approach is to con-
sider the network itself as programmable. Active networks are the most notable result of 
the efforts to develop programmable network architectures. The first trials to build active 
networks date since the ATM age in 90s, when there was a lot of work involved such as the 
Tempest project [79], Capsules [32], elastic networks [95], SwitchWare [80], xBind. They 
tried to introduce QoS into ATM networks by enhancing the networks with programmable 
devices that would process traffic or would self-program based on built-in tags or programs, 
respectively. Unfortunately, the research on active networks diminished considerably af-
ter the year 2000. Around the same time, optical networks gave enough bandwidth and 
brought different mechanisms for QoS through the end-to-end light paths provisioning. 
In the end, active networks have not been adopted as a solution to increase flexibility in 
networks.
	 In recent years, new developments have led to additional research and new application 
domains, such as building dynamic communities in networks for the purpose of sharing re-
sources in a secure manner. In the post ATM era, Kindred and Sterne [96] were among the 
first to describe and address the problem of building dynamically secure network commu-
nities over public Internet, though their solution offered a coarse-grain granularity of com-
munity members at the level of firewall-protected domains. However, the authors experi-
ence shows the difficulty to build an effective community over existing organizations which 
have different policies and cultures and hence, different ways to distinguish the members 
from non-members. In other words, communities need a simple way for legacy applica-
tions and users to recognize their membership in an existing network infrastructure. More-
over, in the context of grids, a community builds up at the granularity of group members 
(e.g. user applications or jobs) and eventually different levels of group membership.

3.6.  Conclusions and Future Work

The starting point of this work is our believe that in the context of grids, users and com-
munities need the freedom and flexibility to implement their specific network services. To 
reach this target we introduced the generalized Token Based Networking (gTBN) architec-
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ture that combines the programmability of the User Programmable Virtualized Network ar-
chitectural framework with Token Based Networking. The proposed reference implemen-
tation is based on programmable network processors and commodity PCs, and employs 
an interposition system for seamless integration of gTBN with existing grid applications. 
A gTBN test bed was set-up and its performance evaluated through a firewalling use case. 
We also challenged the robustness of the interposition system by executing a set of complex 
standard Grid applications on our gTBN test bed. These experiments convinced us that 
multi-gigabit programmable networks are an achievable target for today’s Grid networks.
	 We consider this work as a first step on the road towards a complete Grid implementation 
of the User Programmable Virtualized Network architectural framework. While still in its 
infancy, we are now investigating using gTBN for fine- grained access control in dynami-
cally switchable light paths of Starplane, the interconnection network of the distributed 
computing cluster DAS-3 [97]. Furthermore, we are developing application components 
that implement more advanced network services like QoS and multi-cast.
	 Future extensions of this work will include improved resource allocation and brokering, 
and will enable integration of gTBN into the big picture of Grid’s middleware resource and 
service management, such as VLAM-G [98].
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This chapter presents an architecture and proof of concept to control network resources 
from a Grid workflow management system and to manage network resources from work-
flow-enabled applications at run-time based on previous work (Chapter 1). Depending 
on the network infrastructure capabilities or future advances, applications may employ 
existing QoS mechanisms or use application-specific ones to provide advanced network 
services. Our approach leads to performance improvements in communication intensive 
applications by actively managing traffic flows and enables Grid applications to manage 
interworking between network and computer resources.

4.1  Introduction

Grid workflow management systems enable smart utilization of computational resources 
in Grid environments by allowing scientists to plan, schedule and run complex applica-
tion execution scenarios as part of their scientific experiments. Resource virtualization, i.e. 
resource as a service, is one of the basic design principles in Grid architecture to make 
the large amounts of resources manageable and easier to use by scientists. Because most 
Grid applications have large computational demands, the attention in Grid computing has 
predominantly been focused on effective and efficient sharing of computational resources.
	 In recent years, many initiatives have emerged, in which researchers collect enormous 
amounts of data from the environment, such as dikes [99], the sky [100] or from scientific 
experiments, such as CERN’s LHC detector [101]. By using the Grid, a large amount of 
resources are at the disposal for such applications, which would otherwise be technically 
or financially unfeasible to achieve with dedicated systems. The term Sensor Grids [102] 
loosely defines these types of applications.
	 Sensor Grid applications are difficult to realize from the network perspective, because they 
can only execute well, if the underlying network supports their communication demands. 
On one hand, applications such as e-VLBI, only need high-speed network connections at 
the time of an experiment, but the required link connectivity may change while the experi-
ment progresses. On the other hand, an early warning system for dike failure might need to 
redirect sensor data to intermediate nodes in the network for filtering or aggregation before 
feeding it to computation nodes. Because sensors cannot know in advance to where the data 
needs to be sent, the network has to be configured on beforehand or adapted at run-time. 
Unfortunately, such behaviour is hard to achieve in current Grids, because networks do not 
expose their resources and services to the application domain.
	 Here, we present the architecture and a proof of concept to control and manage existing 
network services, such as MPLS [23] or deploy application-specific ones from Grid work-
flow management systems. The novel idea of our approach is that network elements are 
virtualized as software objects in the application domain. The application programmer uses 
the programming interface of the software objects to implement a desired network service. 
At run-time the workflow management system deploys the application-specific network ser-
vice on the network elements, which enables applications to control the network elements. 
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Grid workflow management systems are a natural choice to implement these mechanisms, 
because they provide abstractions to consider networks as a collection of software objects 
and already provide similar functions to manage computational and storage resources. 
Therefore, it is straightforward to reuse and extend existing workflow management system 
with control over networks. To our knowledge, no architecture or framework is described in 
literature to control network resources from workflow management systems.
	 In Section 4.2, we introduce the problem domain, design issues and the basic framework. 
In Section 4.3, we present a proof of concept using WS-VLAM [98] workflow management 
system and in Section 4.4 we present preliminary experiments and results to demonstrate 
the feasibility of network control from workflow management systems. Related work is pre-
sented in Section 4.5, followed by discussion and future work in Section 4.6. The chapter 
concludes with Section 4.7.

Figure 27. Three major components form a large-scale observation system: sensors (1-5), comput-

ers (8-10) and interconnection networks (6, 7).

4.2  Interworking Between Sensors, Networks and Grids

Typically a Sensor Grid application is composed of three main components: (1) sensor net-
works that monitor environmental properties, (2) computers that process sensor data and 
(3) an interconnection infrastructure that connects sensors to computational resources, ei-
ther by using the Internet or dedicated networks.
	 Depending on type of the observation (Figure 27), sensors (S) need to be distributed at 
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specific locations (e.g. homes (2), cities (2, 3, 4) or in rural areas (5)). Depending on their 
situation, sensors are connected via: sensor-to-sensor network, wireless (6) or wired (7) 
dedicated network or the Internet. When connected to the Internet, applications only get 
best-effort connectivity. In contrast, dedicated networks can support software plug-ins for 
application-specific data transformations, such as aggregation, filtering or pre-processing 
of data streams or conversion of sensor network protocols into Internet or application-spe-
cific protocols. Such networks, or the Internet where necessary, connect sensors to super-
computers (8), storage (9) or management systems (10).
	 Workflow management systems (WMS) provide a transparent and flexible way to com-
pose and execute distributed applications on the Grid. An intuitive approach would be to 
use a WMS to orchestrate all the components of a Sensor Grid application, i.e. let the WMS 
care about execution of software components on distributed computational resources and 
the management of interdependencies and data transfers between these components. But 
Sensor Grid applications have specific demands that have to be addressed by WMS be-
fore an implementation is feasible. The most Sensor Grid demand is to reserve and control 
network resources to ensure that sufficient network capacity is available to transfer data to 
computational nodes. WMS already fulfil the task for computational and storage resources. 
What are the requirements to include network control?

4.2.1  Combined Allocation of Network and Grid Resources

The applications we are considering exhibit a strong sensitivity to their execution time; they 
are all connected with sensors, record and process real-life data at a given sampling rate. 
When a sensor produces data, it either has to be stored or processed immediately. Once 
a radio telescope turns on, for example, it is necessary to receive and process the data as it 
was transmitted. When this is not fulfilled for a moment, important events may be missed, 
wrong correlations may be made, and the whole experiment may fail. We consider such 
applications as time-critical. Time-critical applications need to have insurance that the en-
vironment is properly dimensioned at run-time. Because Grids can support reservation of 
resources on beforehand, Grids can provide this insurance. However, in order to support 
experiments that involve sensor networks, the interconnection networks, shared or dedi-
cated, need to support resource reservation and control too. 
	 In the case where resources are not known on beforehand, for example when an applica-
tion needs to switch to another data source at run-time, the resource manager has to provide 
a function to potentially override the reservations made by other applications, i.e. the system 
has to support rank ordering of the applications in order to decide which applications have 
priority above others (Figure 28). In addition, the network and computing resources need 
to be reconfigured on the fly to adapt to the new situation. Because only the application 
programmer knows how to organize the resources for the application, it needs mechanisms 
to manage computational resources as well as network resources. Therefore, the resource 
manager should be accessible through an application-programming interface.
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	 In the Grid the exact locations of the Grid nodes are unknown at reservation time. There-
fore, we need to match and reserve network resources after the Grid nodes are allocated. 
If the network cannot provide the required resources for the application, the computation 
nodes need to be rescheduled. This process involves coordinated interaction with Grid bro-
kers and network managers and can be dealt with from a WMS. An additional benefit of 
using a WMS is that it can negotiate and determine the best Grid brokers to submit jobs 
to, based on statistics gathered from previous submissions. In addition, WMS specialize in 
dynamic and advanced algorithms for matching, reserving and managing resources.

Figure 28. Without reservation network services can conflict (1). Reservation guarantees resources 

to be available at run-time (2). In order to support dynamic reservation, a resource manager needs 

to prioritize reservations (3).

4.2.2  The Network as Software Object in Grid Applications

Networks need to provide enough flexibility to support network reservation and manage-
ment required by our class of Grid applications. In Chapter 2, we presented a concept in 
which network elements are virtualized as software objects in the application domain. By 
virtualizing network elements as software objects in the application domain, it becomes 
possible to control networks using software. Hence, application domain software can be 
used to program and automate the behaviour and management of network services. 

4.3  Implementation

We developed a proof of concept to gain insight in the technical challenges involved in 
the virtualization of network elements and network control from Grid workflows. For the 
implementation we reuse and extend existing Grid software, such as the Globus Toolkit 4 
[103]. The implementation of the proof of concept consists of two parts, which later are 
integrated to one solution.
	 The first part implements an extension of WS-VLAM scientific workflow management 
system with operations to reserve and control network resources. We integrate a program-
ming interface of the virtualized network elements with the programming interface that 
WS-VLAM provides to Grid applications to manage computational resources. This adds 
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network service management to Grid applications, which use the WS-VLAM application-
programming interface.
	 The second part implements a Network Operating System (NOS), which acts as an ac-
cess point to the network and its resources. In principle, the network management system 
can implement the task of the NOS. However, network management systems are designed 
towards the needs of network operators, while we are interested in the challenges to expose 
the network services to applications. Therefore, the NOS interface (Figure 29, 4) is mod-
elled after Grid broker to facilitate the integration with Grid software.

Figure 29. The architecture to control network resources as software objects in WS-VLAM. 

4.3.1  WS-VLAM Grid Workflow Management System

WS-VLAM aims to provide and support coordinated execution of distributed Grid-enabled 
components combined in a workflow. This workflow management system takes advantage 
of the underlying Grid infrastructure and provides a flexible high-level rapid prototyping 
environment. WS-VLAM consists of a workflow engine that resides within a Globus Toolkit 
4 container on a server side and a workflow editor on a client side. A graphical representa-
tion of a workflow is created in the workflow editor (1) and forwarded to the engine to be 
scheduled and executed on the Grid (Figure 29). The engine consists of two WSRF [104] 
services: the Resource Manager (RM) and the Run-Time System Manager (RTSM). The 
Resource Manager is responsible for discovery, selection and location of resources to be 
used by a submitted workflow. The Run-Time System Manager performs the execution and 
monitoring of running workflows (2).  In WS-VLAM, all distributed applications are rep-
resented as a workflow in the form of a data driven Direct Acyclic Graph where each node 
represents an application or a service on the Grid. The WS-VLAM workflow is data-driven; 
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The second part implements a Network Operating System (NOS), which acts as 
an access point to the network and its resources. In principle, the network manage-
ment system can implement the task of the NOS. However, network management 
systems are designed towards the needs of network operators, while we are inter-
ested in the challenges to expose the network services to applications. Therefore, 
the NOS interface (Figure 29, 4) is modelled after Grid broker to facilitate the inte-
gration with Grid software. 

 
Figure 29. The architecture to control network resources as software objects in WS-VLAM.  
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workflow components are connected to each other with data pipes in a peer-to-peer manner 
via input/output ports. When new data arrives to an input port of a workflow component 
the data are processed by application logic and the result is transferred further via an output 
port. 
	 Workflow components can be either developed using WS-VLAM library API or can be 
created by wrapping existing ‘legacy’ applications into a container. When an application is 
wrapped the workflow system takes care of state updates and provides an execution environ-
ment that allows the manipulation of various aspects of the application. 
	 Workflow components are able to communicate by data streams with each other, with 
the workflow management system, at run-time with users by means of parameter interface. 
Each workflow component can have a number of parameters that can be set by a user of 
workflow management system to control the execution or by the component itself to sig-
nal or report some state. For example, the parameter interface can be used by a workflow 
component to request additional resources like a higher-speed network connection from 
the workflow management system. The initial WS-VLAM design implied the selection and 
control of computation resources only – what is typically provided by Grid middleware.

4.3.2  The Network Operating System and Integration of the Network with WS-VLAM 

Networks only expose end-to-end transport services, as network details are not relevant to 
most applications. Exposing control over network services from the application domain 
enables WMS and applications to develop and manage application-specific services. How-
ever, it also imposes complex provisioning issues to the application domain. To address 
network related provisioning, we introduce a Network Operating System (NOS), which acts 
as a single point of access to the WMS and hides network-specific complexities, such as 
provisioning of network elements in a consistent manner. The role of the NOS is to:

	 1)   Manage user/application access to network resources 
		    (e.g. authentication, allocation, release),

	 2)   Ensure fair usage (e.g. resource budgets, prioritization, scheduling),

	 3)   Prevent errors in network resource allocation 
		    (e.g. creating paths between not connected nodes, exception handling). 

The NOS communicates with clients through dedicated control connections. On start-up, 
the NOS clients register itself to the NOS. The AC subsystem in NOS clients uses Streamline 
[36] to load an application-specific network service. We limit ourselves to the manipulation 
of routes, but Streamline enables the implementation and dynamic reconfiguration of com-
plete routing protocols. The NOS is the entry-point for coordinated access and control of 
network services. On behalf of the application, it loads or modifies Streamline modules on 
the NEs. The NOS builds and maintains a network model by executing a discovery mecha-
nism at Ethernet level through which it collects all the neighbours of connected clients.
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	 A chain of packet processing modules (Figure 30) defines which packets are filtered and 
which the network behaviour is applied. A number of such chains loaded on several NEs de-
fine an application-specific network service. In order to provision a network service, which 
may be as simple as a static path for a source and destination of the application, each chain 
needs to be provisioned. The NOS uses a distributed transaction monitor to execute the 
provisioning. When a load or modification of a NE fails, it rolls back the manipulations of 
all the NEs to keep the network in a consistent state. The NOS assigns each network service 
a protocol independent token, which is stored in the IPv4 option field. The token is used to 
authenticate and filter each packet according to the provisioned packet processing chains. 
This way, tokens associate network services with the traffic in which they are embedded. 
	 A Network Broker (NB) (4) encapsulates the NOS to provide the same function as grid 
brokers (3), i.e. capabilities to query, request and load network services (Figure 29). Be-
cause the resulting interface is similar to Grid brokers, it is straightforward to extend the 
WMS with an additional service to include discovery, allocation and provisioning of net-
work resources and services via the NB.

Figure 30. A Streamline request in which packets are taken from the Linux Netfilter [37] hook, then 

filtered by token and the IP destination overwritten.

	 The flexibility of network connectivity in application and workflow components depends 
on the usage of the WS-VLAM libraries. If the WS-VLAM API is used, WS-VLAM automati-
cally handles establishment of connections and other technical Grid issues and provides 
the application developer the resulting data pipes created to its peer (e.g. in the form of 
C++ or Java IO stream). In WS-VLAM, network connections are implemented with Globus 
sockets and utilize only TCP (Figure 31). If (legacy) applications are wrapped in WS-VLAM 
however, connection handling remains the responsibility of the application. Although WS-
VLAM does not control such connections directly, it does provide applications the means to 
control network services. In this case, UDP and other protocols can also be supported.
	 The network broker receives requests from the WS-VLAM engine via the profiler (see 
Figure 29). On successful execution of the request, the network broker returns a token to 
WS-VLAM that associates the network service with the request. WS-VLAM then attaches 
the token to the data sent by the application. On its turn, the NOS can identify the token (in 
the IPv4 packet) and apply the associated network service. However, the node on which the 
application runs has to attach the tokens to the packets. When the API is used, WS-VLAM 
provides tokenization of application traffic. When the application cannot use the API calls, 
because the source code cannot be modified for example, WS-VLAM will use socket inter-
posing mechanisms [105] to tokenize the traffic.
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The NOS communicates with clients through dedicated control connections. On 
start-up, the NOS clients register itself to the NOS. The AC subsystem in NOS 
clients uses Streamline [36] to load an application-specific network service. We 
limit ourselves to the manipulation of routes, but Streamline enables the implemen-
tation and dynamic reconfiguration of complete routing protocols. The NOS is the 
entry-point for coordinated access and control of network services. On behalf of the 
application, it loads or modifies Streamline modules on the NEs. The NOS builds 
and maintains a network model by executing a discovery mechanism at Ethernet 
level through which it collects all the neighbours of connected clients. 

 
Figure 30. A Streamline request in which packets are taken from the Linux Netfilter [37] hook, 
then filtered by token and the IP destination overwritten. 

A chain of packet processing modules (Figure 30) defines which packets are fil-
tered and which the network behaviour is applied. A number of such chains loaded 
on several NEs define an application-specific network service. In order to provision 
a network service, which may be as simple as a static path for a source and destina-
tion of the application, each chain needs to be provisioned. The NOS uses a distrib-
uted transaction monitor to execute the provisioning. When a load or modification 
of a NE fails, it rolls back the manipulations of all the NEs to keep the network in a 
consistent state. The NOS assigns each network service a protocol independent 
token, which is stored in the IPv4 option field. The token is used to authenticate and 
filter each packet according to the provisioned packet processing chains. This way, 
tokens associate network services with the traffic in which they are embedded.  

A Network Broker (NB) (4) encapsulates the NOS to provide the same function 
as grid brokers (3), i.e. capabilities to query, request and load network services 
(Figure 29). Because the resulting interface is similar to Grid brokers, it is straight-
forward to extend the WMS with an additional service to include discovery, alloca-
tion and provisioning of network resources and services via the NB. 

The flexibility of network connectivity in application and workflow components 
depends on the usage of the WS-VLAM libraries. If the WS-VLAM API is used, 
WS-VLAM automatically handles establishment of connections and other technical 
Grid issues and provides the application developer the resulting data pipes created 

 (netfilter_fetch_in)
 >(fpl_tbs,expression="TOKEN") \ 
 >(fpl_ipdest,expression="DST_IP") 
>(skb_transmit) 
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Figure 31. Connection handling for WS-VLAM workflow components.

4.4  Experiments and Results

We developed a test bed and performed a series of experiments to evaluate the proof of 
concept and the feasibility of our approach. The experiments concentrate on critical aspects 
of the proof of concept in various application scenarios. We look at scenarios in which the 
network has to be controlled at run-time, i.e. a continuous loop of monitoring and adapta-
tion to achieve or stay in an optimal configuration. Reservation-time scheduling of network 
services is trivial; the network is setup just before execution using the same mechanisms. 
We illustrate the basic steps of resource reservation, allocation and execution of an applica-
tion in two cases. In one case, the network needs complete reconfiguration, because the 
data sources change. In the second case, the application requests different connectivity pa-
rameters.  First, however, we provide a summary of our experimental test bed.

Figure 32. Test bed setup and programmed routes in the first experiment. The network broker ac-

cesses the nodes over a separate control plane.
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4.4.1  Experimental test bed and performance of programmable nodes

All the nodes in the test bed run Globus Toolkit 4 and also the programmable network 
software (Streamline) at kernel level. The network broker and WS-VLAM run on separate 
machines over a control network. Figure 32 shows our test bed in which nodes are intercon-
nected through two networks, as follows: the default network uses a shared 100Mbit switch 
and the second network uses an IDXP2850 network processor unit programmed to route 
IP packets at 1Gbps. 
	 Table 1 shows the overhead introduced by our packet manipulation components in 
Streamline within the kernel of each node. We used Iperf to exchange TCP and UDP traffic 
between two nodes (over 1Gbps network) in both cases: with and without Streamline. With 
Streamline, the jitter is larger and the total throughput is lower than without Streamline. 
However, this overhead is acceptable for our experiments.

Table i. Packet manipulation performance

4.4.2  Run-time request of new data sources scenario

This scenario illustrates how Grid applications can manipulate network services from WS-
VLAM. Although changing paths may involve both computational and networking resourc-
es, when a new aggregation point needs to be chosen for example, for simplicity we look 
only into the networking resource brokerage.
	 Sensor networks and Grids are different systems in reality, but here we assume that a 
sensor network can provide a Grid service, which can be wrapped as workflow component. 
We implemented a sensor workflow component in WS-VLAM, which generates random 
UDP data using Iperf. The workflow component is used to simulate a realistic scenario in 
which the application needs to switch to a different data source, such as a radio telescope, 
for example, to continue running. 
	 In this experiment, two WS-VLAM workflow components (W1 and W2) are re-directed 
to a single consumer (R) by an application that processes the data (Figure 32). When the 
application chooses to request the data of a different sensor, WS-VLAM requests NOS to 
release the current resources to (W1) and to set up a new path from node (W2) to (R). To 
make a clear distinction between W1 and W2, IPerf was used to generate data with a band-
width of 10Mbit for W1 and 30 Mbit for W2, which enabled us to visually verify switching 
from data sources. 

Throughput (Mbps)	 Jitter(ms)

0.026

0.009

317
509

442
798

Streamline
TCP
UDP

Non-streamline
TP

UDP
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	 In our current implementation completing a switch from W1 to W2 takes less than three 
seconds. The mechanisms to load the new behaviour on the network elements, such as a 
two-phase commit protocol, introduce this delay. In the worst case, a node that does not 
reply for any reason causes the commit process to wait for the time-out until failure. In the 
future, we expect to improve the performance of reconfiguring network elements.

Figure 33. Experimental evaluation of test bed (bw in MB/s and t in seconds). 

Figure 34. Screenshot of the workflow editor, which shows WS-VLAM workflow where multiple 

producers (dataGen module) and consumers (bwMeter) are connected.
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4.4.3  Run-time request of better connectivity scenario

Figure 34 shows a screenshot from the workflow manager with multiple workflows. The 
workflow manager starts workflows one by one: 1, 2, 3, 4. When the network performance 
(throughput) measured by an application decreases below a certain threshold, the appli-
cation will request better connectivity from WS-VLAM. WS-VLAM will then offload the 
resources of the requesting application from the 192.168.1.x network onto the 10.10.0.x 
network (e.g. path 4 moves to the 1Gbps network), yielding improved performance.
	 The performance of the experimental application on the test bed is illustrated in Figure 
33. Due to the shared 100Mbps, the per-path performance decreases while more paths 
are established and exchange data traffic at maximum. The switch offers one single net-
work service: best effort. The application running in the workflow (bwMeter in Figure 34) 
measures the throughput and when it reaches a programmable threshold, it requests more 
resources for the current configuration to WS-VLAM. Next, NOS receives a demand for bet-
ter paths and decides to create alternative paths over 1Gbps network. Consequently, we see 
that the throughput increases (bwMeter in the second part of Figure 33). 
	 Figure 35 illustrates automatic switching of network paths according to application re-
quests. First, the application is started on a network that provides the throughput of 12 
MB/s (section A in Figure 35). Later another application starts using the same network 
link which results in decreased network performance of the current application (section B). 
At some point application needs to temporarily increase the throughput and acquire more 
bandwidth (e.g. for a scheduled bulk data transfer). This happens in the section C: the ap-
plication switches itself to use another faster network. After the needed data transfer action 
has been performed the path on the fast network can be released and the initial network is 
used again (section D).

Figure 35. Bandwidth measurements while the application automatically controls throughput.
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4.5  Discussion

The experiments with our proof of concept show the feasibility of network control from 
Grid workflow management system. Traditionally, applications only deal with end-to-end 
transport services in the network. Our approach changes the way applications can deal with 
network details. Amongst other things, we need to investigate programming models to de-
velop network services and determine the scalability of our approach. While the proof of 
concept only supported path manipulation, in the future we plan take full advantage of 
Streamline to develop complex application-specific routing protocols. Because this is our 
first attempt, however, many issues still remain. 
	 We experienced the most difficulties in supporting application-specific UDP and TCP 
traffic manipulation for legacy applications. While supporting UDP is straightforward, 
supporting TCP is difficult because of the many complex mechanisms that are part of the 
protocol. Therefore, the behaviour of the protocol has to be understood (and in some cases 
worked around) while implementing application-specific services.
	 We noticed that when using the IXDP2850 network processor the jitter increases signifi-
cantly in the TCP flows. This might be caused by side effects of the code, which processes 
and rewrites the IP packets. In general, jitter is caused when application-specific code is 
executed and could be improved taking into account the multi-core architectures. Although 
decreased throughput is partly caused by the programmable network, a significant per-
formance gain is expected when more efficient mechanisms to capture traffic are imple-
mented. 
	 Our approach to match and schedule the network after the Grid broker allocated the com-
puting nodes sufficed in our proof of concept, but might be inefficient in larger systems. 
Moreover, when an application requests new computational resources, network resources 
need to be rescheduled. Better approaches need to be developed and evaluated in real Grid 
environments.
	 In this chapter, we have not addressed the issues of managing resources over multiple do-
mains. As with grid brokers, we believe that every network can have its own network broker 
and NOS. But, to effectively reserve, load and connect network services to applications over 
multiple network brokers remains a challenge. At least at the network level, tokens in IP 
packet could be used for multi-domain authentication and for associating traffic to applica-
tions. Although technically feasible, the biggest hurdle is expected to be the administrative 
efforts to allow network resource reservation and control to span over multiple domains.

4.6  Related Work

Coordinated configuration of Grid and network resources is difficult in practice [106]. The 
effort can be justified in large e-Science applications, however, because it might be easier 
to run experiments over multiple Grids rather than claiming a large portion of resources 
in one Grid. But, to achieve acceptable performance over multiple Grids, communication 
links between nodes the Grids should be optimized. In most cases, this means configuring 
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dedicated communication paths between the Grids. Progress in grid network research can 
be characterized by this goal.
	 Some attempts have been made to incorporate network resource orchestration into work-
flow management systems. WINNER (Workflow Integrated Network Resource Orches-
tration) from Nortel Network Labs [107] proposed a way to integrate network resources 
with WS workflows; DRAC [108] network services are leveraged here for allocation and 
information in network resource orchestration. However, this project was mostly oriented 
to business workflows and seems to be not maintained at the moment. In the scope of sci-
entific Grid workflow management systems we are not aware of initiatives to integrate net-
work as a fully featured manageable resource on the workflow and application level.
	 Several Grid projects attempt to extend control over network resources into the Grid tool-
set. So far, the efforts focused on reservation, traffic engineering of network circuits and im-
proving the performance of network protocols [20], [25], [109]-[112], but did not expose 
the new capabilities to workflow management tools where they can be easily accessed and 
used by applications and end-users.
	 In our architecture, we have looked at the virtualization of programmable network ele-
ments as software objects in workflow management systems. We believe that (1) a workflow 
management system is the right place to control and manage networks and interface with 
applications and (2) programmable network technologies are sufficiently well understood 
to be applied in Grid networks of the future. For example, the next generation of the DAS-4 
[113] super computer will include FPGAs in the network fabric. To support our approach 
in current grid networks, though with the flexibility offered by existing network technolo-
gies, we need to take advantage of the progress made in Grid networks. Here, we summa-
rize some of the state-of-the-art Grid networks.
	 The G-Lambda project successfully conducted the first experiments on coordinated 
scheduling of network and Grid resources [110], [114]. In G-Lambda’s approach, users 
submit a job to a global Grid resource scheduler, which on its turn allocates resources by 
negotiating with individual computational and network resource managers. G-Lambda fo-
cuses on provisioning optical light-paths between Grids, using MPLS for path provisioning.
	 UltraLight aims to provide a dynamically configurable network to support high-perfor-
mance, distributed data-processing application for the high-energy physics community 
[109]. In their approach, the network is considered a resource and is closely monitored. In 
addition, the system can take advantage of monitoring information about network state to 
optimize network resource usage.
	 The e-Toile project introduces active networks into the Grid domain [115]. By doing so, 
they go further than end-to-end path reservation and also allow applications to inject code 
into the network. Their active networks framework TAMANOIR [116] places active nodes 
at the edges of Grid networks, which can be a platform for adding new and innovative net-
work services. 
	 In non-Grid related network research, other efforts propose to make the management lay-
er programmable [22], [117]. In this approach, computer programs define policies and 



75

network services and control switches and routers that implement flow routing. Such an ap-
proach fits well with our goals, because they support application-specific network services 
and are backwards compatible with current network technologies.

4.7  Conclusion and Future Work

Network performance is crucial to a class of communication intensive applications loosely 
defined under the term Sensor Grids. Such applications may run in Grids, because it is 
too costly or unfeasible to develop dedicated systems. Unfortunately, despite the advanced 
management of computational and storage resources, Grids lack network resource man-
agement. To support communication intensive applications or applications with specific 
network demands in Grids, we introduced a novel architecture. In this architecture, net-
work elements are virtualized as software objects in the application domain and managed 
by a Grid workflow management system. Moreover, we have built a proof of concept using 
an existing workflow management system (WS-VLAM) and performed a series of experi-
ments to demonstrate the feasibility of our approach. 
	 Some Sensor Grid applications require immediate access to large amount of resources 
and control over networks triggered by an event. For example, dangerous water levels de-
tected at dike may result in a large-scale simulation for risk assessment. We have not yet 
implemented dynamic reservation of shared network resources for urgent computing. Such 
a feature also needs to be supported by Grid brokers, though WS-VLAM and the network 
manager can be extended to support application priorities.
	 While we believe the presented work is a promising approach to support communication 
intensive applications and to build Sensor Grids, it also raises questions about scalability 
and security. How can Grid applications control potentially tens of thousands of nodes? 
Can we use Grid workflow managers to automate parts of the implementation we did by 
hand? What are the implications for network management and the risks to network opera-
tors? In other words, to develop and evaluate practical implementation of the network as a 
resource in Grids is a topic for further research.
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This chapter presents a framework that enables application developers to create complex 
and application specific network services based on experience from previous work (Chapter 
2-4). The framework expands on the User Programmable Virtualized Networks concept 
and shows that the typical pattern of an application specific network service is a control loop 
in which topology, paths, and services are continuously monitored and adjusted to match 
application specific qualities. We present a platform in which network control applications 
can be developed and illustrate possible use cases. 

5.1  Introduction

Almost every type of network implements measures to guard against unexpected environ-
mental changes, such as the effects of failing links, changing traffic patterns or the failure 
of network nodes themselves. Such measures can be considered as optimization of network 
resources with respect to network robustness. At the basis of the optimization of network 
resources are programs that control the response of the network to changes in and outside 
of the network. Moreover, actively controlling network resources is crucial to maintain the 
network service that is delivered to applications.
	 Optimizations have a certain penalty in realistic situations. For example, in sensor net-
works [118] minimizing the transmission power of sensor antennae optimizes battery 
lifetime, but impacts connectivity. Depending on the application and the actual situation, 
engineers will choose an optimum. Generally, the optimum network service is application-
specific, yet in most networks, application programmers have no control over the network. 
One reason is that a general applicable, conceptual and technical framework to program 
the network is absent [119]. 
	 In the absence of any notion of specific application demands, as is usually the case, net-
work providers can only configure and control the network for best-effort or constant-effort 
services. Applications can be so specific in their communication requirements and how 
they tolerate or deal with communication failures. So, theoretically at least, only applica-
tions know how to respond to dynamics in computing and network infrastructure. If cloud 
infrastructures would only run on wind energy, for example, the amount and direction of 
wind will continuously change the energy available for computing and network resources 
and their availability to applications. In such cases, (partial) control over the network must 
also be transferred to a computer program, i.e. the application domain, to facilitate continu-
ous reconfiguration and exploitation of resources.
	 Computer networks have been designed according to well-defined requirements speci-
fied by standards. Application engineers include the network in application logic by using 
the interfaces of a given network service, e.g. sockets in the Internet. Here, we extend the 
interfaces to the network such that application-specific network service demands become a 
network control issue programmed in the application domain, i.e. a dynamic user network 
interface. We show the consequences of extending the interfaces to the network into the 
application domain.
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	 In Section 5.2 we review state of the art of related areas in programmable networks, over-
lay network and sensor networks that allow network control from the application domain. 
Then, in Section 5.3, the application framework is presented and its functional compo-
nents are described in Section 5.4. In Section 5.5, the implementation and test bed is 
introduced and Section 5.6 follows with examples of applications that control networks. 
The chapter ends with conclusions and future work in Section 5.7.

5.2  Related Work 

A basic approach to develop a programmable network is to use general-purpose computers 
as Network Elements (NE) and implement C programs that manipulate packet streams and 
network links [36], [56], [57]. The programmable and active network [13], [32] commu-
nity developed the architectures for dynamic deployment and extensibility of functions in 
network elements. Other efforts provide programmability in the control plane of networks, 
while remaining backwards compatible with current Internet technologies [22], [120]-
[122]. These technologies enable network operators to offer better services to applications.
	 Basically, there are two types of limitations in networks that motivate application control: 
(1) limited network functions or (2) limited network resources. If the network does not of-
fer enough functionality, a well-known approach is to implement the network functions as 
part of the application, i.e. create and manipulate a virtualized network (overlay network). 
If the network has limited resources to accommodate application demands in a best-effort 
manner, frameworks exist to manage the quality of service on behalf of the application 
[23], [24], [38]. Next, we illustrate some approaches from related network research areas 
that deal with these limitations.
	 Overlay networks enable developers to redesign and implement, amongst others, address-
ing, routing and multicast services optimal to their application domain [123]. Overlay net-
works are widely used to support specific services, such as distributed hash tables [124], 
anonymity [87], and message passing [125]. Overlay networks might lead to sub-optimal 
utilization of network resources, because the mapping to the physical network resources is not 
open to the application developer. Moreover, overlay networks essentially duplicate functions 
offered by the physical network. Recently, some efforts [126] propose to expose physical net-
work properties to applications to improve their mapping to the physical network. Assuming 
that networks are properly dimensioned, at least from the user’s perspective, overlay networks 
are a straightforward solution to support their specific network service requirements. 
	 Sensor networks motivate tight integration of applications and network services [127]. 
Because of the resource constraints, sensor network designers attempt to use the scarce 
resources efficiently and various approaches to program sensor networks have been devel-
oped [29]. In Macro-programming [30], high-level programs use an intermediate language 
to abstract away concurrency and communication aspects in sensor application program-
ming. A compiler translates the programs into basic instructions for individual nodes, and 
takes communication characteristics into account. In TinyDB [128], communication is 
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integrated with a data query mechanism. Macro-programming and TinyDB show that with 
a framework that structures the design space of network control applications, it becomes 
possible to design and implement reusable components for new applications.
	 Our research in advanced applications of networks [41], [52], [99], [105], [106], [129] 
shows that applications have different optimal network services. Existing network manage-
ment systems do offer APIs to configure network services [130]. Such APIs implement the 
network abstractions chosen by the network operator. We found that our use cases in hy-
brid networks and sensor networks require more flexible and specific network services than 
those designed and implemented by network operators. Because the application domain 
offers developers more flexibility, it might be more practical to implement network services 
as part of the application. Hence, we developed a model that enables developers to program 
networks as part of their application [82]. The resulting framework, User Programmable 
Virtualized Networks (UPVN), models the interworking between networks and applica-
tions and provides a conceptual framework to investigate design patterns of application-
specific network services (Chapter 2). 

5.3  Application Framework for Network Control

Programmable network element technologies support dynamic network service composi-
tion for applications that need new network functions, such as network embedded trans 
coding of video streams. If changes occur in the network, however, applications must adapt 
to the new situation. The adaptation process may be at the end-points, such as in TCP flow 
control process but may also be in the network, such as a process that changes the edge 
weights of a shortest path routing protocol [131]. The adaptation process typically consists 
of (1) inferring (possibly incomplete) network information, (2) calculating network state 
(3) and adjusting the network to a configuration that leads towards the desired optimum. A 
closed-loop control model, a well-known model in control theory to influence the behavior 
of a dynamic system [132], provides a minimal framework for network control (Figure 36).
	 In order to match the network to a state that is optimal to an application, the application 
has to collect (possibly incomplete) network information. The application developer choos-
es application specific abstractions (NCx) to update a model the application uses internally. 
The application combines state information from all or a subset of NEs to update the inter-
nal model. In principle, the internal model can also include non-network related informa-
tion, such as computing or hosting costs, energy usage and service level agreements.
	 The control application applies an algorithm to find the actions (NCy) needed to adjust 
the network behavior in such a way that it matches the application needs (e.g. a stable, 
optimized state), which are described by the reference. To implement changes in the net-
work, the control application translates decisions into instructions, such as create, forward 
or drop packets specific to each NE involved in the application. This means that the system 
needs to provide a distributed transaction monitor to keep network manipulations that in-
volve multiple NE consistent.
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Figure 36. The application framework to control networks contains a control loop.

	 In control theory, a measurement (AC Properties) from the system is subtracted from a 
reference value, which leads to an error value as input for the control application. In our 
framework, the measurements (AC Properties) that represent network state may use differ-
ent metrics compared to the controlled state (AC Actions). For example, a controller may 
manipulate edge weights in shortest path routing based on throughput information. Such 
a scenario is meaningful if the relation between throughput and edge weights (δ) is known 
or can be learnt and would be useful to dynamically distribute traffic to avoid congestion, 
for example [131].
	 Applications exchange information (NCx,y) with NEs over a communication network, 
possibly over the same network the application is controlling (in-band). Even though appli-
cation developers may have access to a separate management network, the communication 
path between network and application complicates the design and validation of the control-
ler. Network properties, such as latency and packet loss, limit the amount of information 
that can be exchanged or synchronized. So, NE state information can become incomplete, 
inaccurate or aged. The application developer has to understand the limits in information 
exchange of a given network, i.e. observability, when designing the control application.

5.4  Functional Components

The OSI reference model organizes the interworking of applications and networks in seven 
layers [40]. The design principle of layering allows decomposition of a complex problem, 
but application specific details may be lost in the process. If network elements are virtual-
ized in software, the application interface to the software (NCs) can be fine-tuned to the spe-
cific problem domain. However, the fine-tuning might lead to an application specific orga-
nization of network functions. Here, we define the organization of functional components 
to support fine-tuning of the application interface and organization of network functions. 
The functional organization preserves the context of the NEs. For example, an application 
might need to manipulate the traffic of a single strategic point in the network for filtering 
or anomaly detection purposes. 
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changes in the network, the control application translates decisions into instruc-
tions, such as create, forward or drop packets specific to each NE involved in the 
application. This means that the system needs to provide a distributed transaction 
monitor to keep network manipulations that involve multiple NE consistent. 
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Even though application developers may have access to a separate management 
network, the communication path between network and application complicates the 
design and validation of the controller. Network properties, such as latency and 
packet loss, limit the amount of information that can be exchanged or synchronized. 
So, NE state information can become incomplete, inaccurate or aged. The applica-
tion developer has to understand the limits in information exchange of a given net-
work, i.e. observability, when designing the control application. 

tion domain is that developers can use existing software,
such as libraries or other applications developed by do-
main experts. The assumption is that applications know
what network service is required and that applications
can implement the mechanisms to find the optimum net-
work service. We focus on the latter approach with this
assumption in mind.
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Figure 2: A closed-loop control model between applica-
tion and network.

An application has to collect (incomplete) network in-
formation, calculate an optimum network configuration
and adjust the network to reach the optimal adaptation
of network service (Figure 2). The application devel-
oper chooses application specific abstractions, such as
interactive visualization for a human controller (figure 3)
or existing domain-specific software as controller (fig-
ure 4), to update an internal network model (NC

x

) and
to manipulate network state (NC

y

). The internal net-
work model is updated by combining state information
from all or a subset of NEs (NC

x

). In principle, the
internal network model can also take into account non-
network related information, such as computing or host-
ing costs, energy usage and service level agreements.

A controller applies an optimizer or other algorithm
to find the actions (NC

y

) needed to adjust the network
behavior in such a way that it matches the application
needs (e.g. a stable, optimized state), which are de-
scribed by the reference. While state information, such
as neighbors, throughput and latency, from a collection
of NEs combine into global network state, actions to im-
pact network state need to translate into actions, such
as create, forward or drop a packet, specific to each
NE involved in the application. This means that actions
that involve multiple NE benefit from using a distributed
transaction monitor to keep network manipulations con-
sistent.

In control theory, the sensor (AC Properties) subtracts
the measurement from the reference value, which leads
to an error value as input for the controller. In our model,
however, the measurements (AC properties) that de-
scribe network state do not have to match the controlled

state (AC Actions). For example, a controller may ma-
nipulate edge weights in shortest path routing based on
throughput information. Such a scenario is meaningful
if the relation between throughput and edge weights (�)
is known or can be learnt. This example would be useful
for load balancing or routing traffic around undesirable
NEs.

4 Implications of the control loop
When discussing the implications of the control loop,
one should be aware that the complexity of the applica-
tion depends on the network environment. Depending
on the type of application, the AC properties and actions
are at the edges, e.g. do not control routers and switches,
in the data plane or in the control plane of the network.
The following classification of applications follows from
the location of application in the network environment:

Applications that integrate a network service im-
plement alternative addressing, routing or security,
which is optimal to the application. Such applications
have no control over the intermediate network, but form
an overlay of new network functions that map to the in-
terfaces of the underlay.

Applications that are the network service offer al-
ternative network interfaces to other applications, such
as MPLS or openflow [5, 18]. By implementing tech-
nologies in the network other applications have better
control over service levels. The network should support
traffic isolation and application management, i.e. oper-
ating system concepts, to support multiple applications.

Applications that manage a network service use the
hooks or configurable parameters of a network service to
optimize the workings of a network service. In existing
network management systems, the functions are exposed
to the network operator [19] in a centralized system. In
a centralized system, it is straightforward to create an
environment that enables applications to control network
services [20]. We look at the implementation of a typical
application.

4.1 Network model in the application
Any application that implements a controller operates
on a network model, which must be updated by NC

x

events or polling. An AC property getNeighor is enough
to discover the network topology from a controller, for
example with a depth-first search. The information is
then translated into an application-specific data struc-
ture, such as a graph model in Mathematica [21]. With
access to throughput (resulting in thptNetwork figure 4)
router configuration, it is trivial to develop a controller
that load balances router traffic by manipulating their
edge weights. This approach shows that developers can
write advanced, yet straightforward controllers using ex-
isting software.



82

Figure 37. Four functional layers characterize practical application domain network control.

	 We identify three layers of abstraction in a distributed program: node-level execution en-
vironment, interworking framework, and application code. The latter can be subdivided 
in two sub layers, namely the programming environment providing reusable components 
such as programming libraries, and the application program. The result is a four-layer 
architecture (Figure 37). Clearly, the architecture resulting from the application point of 
view is similar to programmable network architectures [13]. However, the functional com-
ponents between the application and programmable network need to be further defined to 
support network control from the application domain and is described next.
	 The orchestration layer (2) facilitates the interworking of software objects and ACs located 
on individual NEs (1). The orchestration layer may also support basic mechanisms, such 
as discovery services, brokers, billing services, authorization, etc. The usefulness of these 
services depends on the network environment and application. In sensor networks, for ex-
ample, there just may not be enough computational and storage resources to support an 
elaborate set of services. 
	 The programming environment, layer (3), provides the NC implementation and reus-
able components, such as a Distributed Transaction Monitor (DTM) or breadth-first search 
algorithm, to support programming of a collection of NCs. Depending on the network en-
vironment, some abstractions can be implemented in the ACs, as a library in the program-
ming environment or both. For example, the application developer might want to program 
network element interactions in a non-blocking manner. Hence, either the programming 
environment or the orchestration layer must facilitate non-blocking interaction mecha-
nisms between ACs and NCs. In our implementation (Section 5.3) we use message passing 
in the orchestration layer and implemented (an easier to program) blocking interface to the 
application (Section 5.5).
	 Because network control is now part of the application domain (layer 4), developers can 
benefit from a large amount of existing software to implement network control programs. 
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A characteristic of the control applications is that they operate on data structures that rep-
resent the network state. Therefore, the programming environment (3) explicitly contains 
a model of the network and the orchestration layer must supply the data with which the 
model can be updated. In Section 6, we discuss issues related to the accuracy of the network 
model.
	 Some applications support the construction of a network model that is close to mathemat-
ical concepts, such as graphs. The Mathematica [75] environment, for example, contains 
a graph data structure, which can be used as a basis for control applications that require 
graph algorithms. By enabling dynamic updates of network state into the Mathematica 
graph data structure, domain experts can simply apply graph algorithms to find and re-
move (through network manipulation) articulation vertices; vertices that may disconnect a 
graph. Besides control, the application layer can also include visualization or other means 
of interaction with the network. The integration with toolboxes, such as those available in 
Mathematica, makes the application layer a powerful environment to develop network con-
trol applications.

5.5  Implementation and Test Bed

In the preceding sections, we introduced the framework for control applications as well as 
a four-layered functional model to implement such applications. We developed a test bed 
according to the presented functional model (Figure 37) to gain practical insight in the 
implementation of the application framework to support network control programs. The 
test bed implements the first three functional layers and enables further exploration of the 
network control applications that are part of the fourth layer. 

5.5.1  Hardware

The test bed consists of eight machines (four dual processor AMD Opteron with 16GB 
RAM and dual port 10Gb NICs and four Sun Fire X4100 with 4GB RAM and 1Gb NICs) 
interconnected by two 1Gb switches and a Dell hybrid 1/10Gb switch. All machines run 
VMWare [133] ESXi hypervisor software and the virtual hardware is centrally managed and 
monitored with VMware vSphere management software. The test bed was bootstrapped 
with one Linux instance containing the software we developed, and iteratively grown to 
20 instances to create a non-trivial configuration of networks and computers (Figure 38).
	 The setup involves two datacenter locations: a virtual infrastructure running in our data-
center in Groningen and an interactive programming environment including an interface 
to a multi-touch table running in our lab in Amsterdam. The multi-touch table enables 
users to interact with NCs (Section 5.6). The two locations are connected by two OSI-Layer 
2 Virtual Private Networks (VPN) on basis of OpenVPN [134]; one for control traffic and 
one for data traffic. At the receiving host in Amsterdam, the control and data networks are 
separated by VLANs.
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5.5.2  Software

The primary purpose of developing a prototype is to gain insight in the challenges and 
details to control a network from applications that require dynamic traffic manipulation, 
and to enable experiments with various network control mechanisms. The implementation 
combines several open source software tools into one NE platform. We provide a global 
overview of the software that implements the functional layers.

Figure 38. Test bed and network connectivity.

5.5.3  Packet Processing and Token Networking 

Fine-grained packet processing and manipulation facilities are implemented in Streamline 
[36], a tool originally developed for high-speed packet filtering and similar to other ap-
proaches presented in literature (Section 5.2). However, Streamline differs from other ap-
proaches by providing a simple and flexible query language to manipulate filter graphs on 
the fly (Figure 30) and a packet processing language FPL [135]. In addition, Streamline 
also allows dynamic loading of kernel modules that provide specific packet manipulation 
functions. 
	 We extended Streamline to support insertion, removal and filtering of tags in the IPv4 
options field, which allows us to bind ACs to network traffic. A Streamline expression de-
fines a chain of packet processing modules, which describes the network behavior for a 
particular application on a NE. Filters, such as fpl_tbs allow packets with specific tags to 
pass through a specific chain of packet processing modules. The expression is calculated for 
each NE separately by the control software and a distributed transaction monitor manages 
loading of each expression on the subsequent nodes to provision a path, for example.

5.5.4  Orchestration Software

The orchestration of ACs in the programmable network is implemented in Java. ACs avail-
able for applications, such as Streamline, are wrapped by Java objects and registered at a lo-
cal Management agent that knows one or more nodes part of the system. The Management 
agents provide basic message-passing functions and default socket connectivity. At startup, 
the local Management agent connects to a known global Management agent.
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Figure 38. Test bed and network connectivity. 
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Streamline [36], a tool originally developed for high-speed packet filtering and 
similar to other approaches presented in literature (Section 5.2). However, Stream-
line differs from other approaches by providing a simple and flexible query lan-
guage to manipulate filter graphs on the fly (Figure 30) and a packet processing 
language FPL [135]. In addition, Streamline also allows dynamic loading of kernel 
modules that provide specific packet manipulation functions.  

We extended Streamline to support insertion, removal and filtering of tags in the 
IPv4 options field, which allows us to bind ACs to network traffic. A Streamline 
expression defines a chain of packet processing modules, which describes the net-
work behavior for a particular application on a NE. Filters, such as fpl_tbs allow 
packets with specific tags to pass through a specific chain of packet processing 
modules. The expression is calculated for each NE separately by the control soft-
ware and a distributed transaction monitor manages loading of each expression on 
the subsequent nodes to provision a path, for example. 

5.5.4 Orchestration Software 

The orchestration of ACs in the programmable network is implemented in Java. 
ACs available for applications, such as Streamline, are wrapped by Java objects and 
registered at a local Management agent that knows one or more nodes part of the 
system. The Management agents provide basic message-passing functions and de-
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known global Management agent. 
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	 The global Management agent provides basic services that involve more than one NE, 
such as a distributed transaction monitor or topology discovery. These basic services are 
implemented as a set of ACs in the global Management agent and can be used by network 
control applications. Although the software supports multiple global Management agents, 
only one instance of the global Management agent is implemented at the moment (Section 
5.6).

5.5.5  Network Model

Our implementation provides various active and passive monitoring services bundled in 
the Monitoring AC that enable network control applications to create and maintain a net-
work model:

	 ·  	 Ping: Basic information about latency and jitter,

	 ·  	 Network Mapper (NMap) [136]: Detect nodes in the broadcast domain of an interface. 
		  For this purpose, NMap is configured to send out ARP requests for all possible nodes in 
		  the broadcast domain,

	 ·  	  /proc/dev/net: Used to retrieve basic throughput information from the Linux kernel. 
		  The throughput service returns a summation of the outgoing bytes on all interfaces,

	 ·  	 Uptime: CPU load information.

The global Management agent allows ACs to subscribe to events, such as NEs registering to 
or detaching from the network. The Monitoring AC subscribes to these events and triggers 
network discovery requests when a NE register, consequently updating its network model 
to the new network state.

5.5.6  AC Management

Management functions, such as starting, stopping and manipulating AC of the program-
mable network implementation, are implemented in the Ruby [72] programming lan-
guage. This allows new network behavior to be added at runtime, e.g. Java classes, kernel 
modules or installation of complete applications. For example, a ruby script with instruc-
tions to compile new code for Streamline and insert it into the kernel can be remotely ex-
ecuted on NEs.

5.6  Network Control Programs

We showed a practical implementation of the model in Section 5.4, which enables a 
straightforward prototyping of network control programs. To test the setup an interface 
to view and modify the state of NCs was built. It allows manipulation of video streams 
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produced by several nodes, which can be displayed on computers with a screen attached. 
By manipulating the NCs, a user can interact with the programmable network: create and 
modify paths and modify NE parameters, such as the packet processing chains of Stream-
line. We successfully demonstrated the setup at Super Computing, 2008, in Austin, Texas 
[51] (Figure 39).

Figure 39. A multi-touch table enables direct manipulation of programmable network components 

of 20 virtual machines. A user (a) modifies a sampler component of a streamline graph that multi-

casts a video to screen (b) and (c). As a result, the stream of (b) is distorted, while the other remains 

normal. 

	 We developed an interactive programming environment with Mathematica, which en-
abled automation of the possible user manipulations in the setup. Combining Mathemat-
ica with programmable networks allows advanced, yet straightforward implementation of 
network control applications. We implemented a Java adapter between Mathematica and 
the Management Agent (orchestration layer). The Java adapter deals with limitations of 
Mathematica’s, such as real-time polling of the network, while being responsive to user 
input at the same time.
	 The Java adapter enables the Monitor AC to trigger the continuous updates of a number 
of data structures in the Mathematica kernel, such as theNetwork or thptNetwork, and 
facilitates the development of control applications in Mathematica. An elementary control 
application is one that visualizes the network state while the data structures are updated 
(Figure 40). For example, the current IP network topology can be displayed while the dis-
covery of the network is in progress; fully discovered in (a) and two intermediate steps (b) 
and (c). Another visualization example maps throughput measurements on a 3D contour 
plot (Figure 41). We also implemented various control applications using the test bed. 
For example, two control applications avoiding congestion were implemented by switching 
paths and by dropping packets on basis of throughput measurements. Another control ap-

A

B C
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plication was to developed to continuously find and provision disjoint shortest paths [41]. 
Based on the experiments, we identify new research questions.
	 Application developers have to consider the accuracy of the network model. For network 
properties as throughput and delay some range of error can be tolerated. However, applica-
tions that require exact shortest paths require accurate topology information. The accuracy 
of the network model is influenced by the rate at which state information is (1) generated, 
(2) transported and (3) processed. At least (2) and (3) have architectural consequences for 
the control loop. One possible architectural consequence is to divide the network in mul-
tiple separately controlled domains, similar to areas in OSPF. In one extreme, dividing up 
the network into smaller individual control domains eventually leads to a fully decentral-
ized architecture, i.e. peer to peer networks. In the other extreme, if network state can be 
generated, transported to and processed fast enough by one controller, then for practical 
purposes a centralized implementation might be preferred.

Figure 40. Mathematica’s function Dynamic[] facilitates continuous reevaluation of network state. 

The statement redraws the graph every time theNetwork data structure is updated with information 

of the network (a). Picture (b) and (c) show two stages of topology discovery.

	 Application developers have to make a trade-off between state exchange and the process-
ing capabilities of network elements. For example, an application that finds and removes 
articulation vertices can run as (1) a centralized component or, in the other extreme, (2) 
can run on each NE under its control. Because the computation of articulation vertices re-

In[55]= Dynamic[GraphPlot[theNetwork,VertexLabeling ‐‣ True, Edgelabeling  True, 

	 ImsageSize ‐‣ {630,372}]]
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quires full topology knowledge, running the application on each NE (2) requires additional 
mechanisms to update and synchronizes changes in topology. Between centralized and de-
centralized implementations of control loops many architectural variants exist. Likewise, 
an enormous variety of control algorithms can be expected. On these points applications 
programmers would benefit from research [137] on design patterns of control loops.

Figure 41. Network throughput of the test bed visualized in Mathematica. The vertex weights in the 

thptNetwork data structure are updated with throughput values from the programmable network. 

The network topology is mapped to the x-y plane and throughput to the z-axis (in bytes per second). 

This way, a user can detect busy spots network and write algorithms to avoid such spots.

5.7  Conclusion and Future Work

Until now, engineers optimize networks at design time and independent of application 
engineers. Examples from sensor networks, hybrid networks and overlay networks show a 
need to control networks at run-time. Past efforts created the programmable network ele-
ment technologies to support dynamic network service composition. In this paper, we use 
these technologies in a framework for network service development in which each program-
mable network element has a software representation in a possibly distributed application. 
We presented an implementation of the framework and several network control applica-
tions. 
	 Our implementations are limited to a single application that controls the network. In case 
many applications want control over the network, another control application is needed to 
manage (conflicting) resource demands, i.e. an operating system for networks. In the fu-
ture, however, it can be expected that network management systems support mechanisms 
to host and run applications on the network. Recent research also continues in this direc-
tion (Section 5.2). More experience is needed to create reusable software components that 

Dynamic [ListPlot3D [Append @@ # & /@Transpose[

		  {coords, GetVertexWeights[thptNetwork]]],

	 Mesh‐‣ Full, InterpolationOrder ‐‣ 3,

	 ColorFunction ‐‣ ColorData[“SolarColors”], PlotRange ‐‣ Full]]
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enable and simplify control application development for large networks.
	 Control loops are a fundamental part of applications that optimize a specific network ser-
vice as a response to changes in or outside the network. In subsequent research we shall 
determine the operational properties of a control application (e.g. how accurate is a given 
network state, what is the delay between network events and the application’s ability to 
react, how fast can failures be detected). We have shown that architectural consequences 
can be expected when changes in the network occur faster than a single control loop can 
effectuate new adjustments, e.g. in large or unstable networks. In this case, the application 
framework needs to support decentralized network control. Hence, to extend the applica-
tion framework to support multi-domain, multi-scale network control is a topic for further 
research.
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We introduce the concept of Internet Factories. Internet factories structure the task of cre-
ating and managing application-specific overlay networks using infrastructure-as-a-service 
clouds. We describe the Internet Factory architecture and report on a proof of concept 
with three examples that progressively illustrate its working. In one of these examples, we 
demonstrate the creation of a 163-node IPv6 network over 18 cloud locations around the 
world. Internet factories include the use of libraries that capture years of experience and 
knowledge in network and systems engineering. Consequently, Internet factories solve the 
problem of creating and managing on-demand application-specific overlay networks with-
out exposing all their intricacies to the application developer.

6.1  Introduction

Infrastructure-as-a-service clouds [1] have the potential to become an elementary part of 
large and complex systems, such as cyber physical systems [2] and ICT systems to support 
smart cities [3], [4]. Nowadays, we all know Internet applications and services such as Spo-
tify [5] and Youtube [6], which have resulted in dedicated overlay infrastructures (servers, 
networks, storage facilities) on top of the Internet. Instead of creating dedicated overlay 
infrastructures for large and complex systems, they can now be implemented entirely in the 
application domain with infrastructure-as-a-service clouds. Consequently, developers of In-
ternet applications and services are confronted with an enormous increase in complexity. 
They must deal with network domain complexity and life cycle management of the overlay 
infrastructure, in addition to the application domain complexity. To make this approach 
feasible, we need to develop a software architecture in which domain experts - application 
developers and network engineers - can apply and reuse knowledge in the design, imple-
mentation, and management of overlay infrastructures. Consequently, a new paradigm to 
create large and complex overlay infrastructures emerges in which developers build on ex-
perience and achievements of domain experts.
	 In essence, overlay infrastructures on top of the Internet add capabilities for controlling 
software and resources at specific locations. A generic way to provide these capabilities is to 
use virtual machines. Not surprisingly, network research test beds use virtual machines to 
experiment with new networking and distributed computing technologies [7]-[10]. Even 
the telecom industry is adopting the use of virtual ma-chines for encapsulating network 
element functions (such as firewalls, residential gateways) [11]. Still, the emergence of In-
frastructure-as-a-service clouds marks a significant step from state of the art, because devel-
opers gain programmatic control over the overlay infrastructure and its application services. 
In the end, application developers only want to deal with the infrastructure details relevant 
to their application. So, the problem is how to allow selection of certain infrastructure de-
tails that a developer needs to cope when designing specific applications. We introduce the 
Internet factory concept as a solution to this problem. 
	 The Internet factories concept is based on the broader concept of software factories in 
software engineering [12]. The rationale of software factories is that the majority of appli-
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cation development can be captured by standardized components and common patterns. 
Instead of reinventing the wheel for problems they encounter, developers re-use existing 
components and customize, adapt, and extend them for their needs. 
	 An Internet factory is a software architecture in which domain experts implement librar-
ies and design patterns to simplify the development of applications that interwork with an 
overlay infrastructure. It builds on the User Programmable Virtualized Network (UPVN) 
architectural framework, which models the general programming problem for interwork-
ing between application domain programs and the network domain [13], [14]. In this 
chapter, we refer to these application domain programs as Netapps – Networked Appli-
cations, to distinguish from other application programs that do not inter-work with the 
network domain. So, an Internet factory provides the libraries and common functions with 
which developers can implement Netapps, such as a cyber physical system, new networking 
concept [15], or application-specific overlay [16].
	 The contribution of this chapter is the design and implementation of an Internet factory 
proof of concept to support the development of Netapps. We developed three Netapps that 
progressively illustrate the deployment stages in the life cycle of an overlay infrastructure: 
creation, configuration, and management. The proof of concept exploits resources of infra-
structure-as-a-service cloud (from now on referred to simply as clouds) providers whose 
interfaces are accessible via the Internet. We also show how libraries, tools, and frameworks 
can be applied to simplify Netapp development. For instance, we describe a library in 
which the creation of an IPv6 overlay infrastructure is fully automated and how third party 
applications can be used to adapt networks. In fact, the presented work shows the potential 
of Internet factories to create large and complex overlay infrastructures.
	 Related work and the Internet factories concept are presented in respectively Section 
6.2 and 6.3. In Section 6.4, the design and implementation of an Internet factory, called 
Sarastro, is presented. Sarastro is evaluated by illustrating three typical Internet factory pat-
terns in Section 6.5. The implications of Internet factories are discussed in Section 6.6 and 
the paper ends with the conclusion and future work in Section 6.7.

6.2  Related Work

In the past, programmable networking concepts have been proposed to give application 
developers more control over the network domain. In its simplest form, a programmable 
network consists of a collection of programmable network elements, such as commodity 
PCs, which can simply be loaded with software providing new functionality for process-
ing network traffic. The basic concepts to program a collection of programmable network 
elements have been developed and validated in active network research [17] and in sub-
sequent research [9], [18]-[20] of which Software Defined Networks (SDN) is currently 
the most popular [21].  The concepts allow a programmable network to become an active 
component of distributed applications by exposing APIs to such applications or by allowing 
applications to embed network instructions in the packets they send over the network. Net-
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work operators use the same interfaces to create network services for specific applications or 
to optimize network services for their own operations. In practice, this leads to an increase 
in complexity for both network operators and application developers.
	 For example, application developers typically use sockets to implement communication 
over the Internet without knowing details of intermediate networks. When using program-
mable network interfaces, they must also deal with details of the networks, such as routing 
and topology. Choices about where to place application code in a network, filtering and 
redirecting traffic to the code, and interventions on failures all require in-depth networking 
expertise. For any service that reaches be-yond a single ISP, the complexity to setup and 
manage a network service over multiple domains quickly increases. 
	 Network engineers who understand the network requirements of application developers 
can implement a solution in the network on their behalf. Then the roles are turned; the 
network engineer must understand the intricacies of the application domain and anticipate 
the network functions and services it requires at what moment. With traffic engineering 
and control plane programmability [21], [22], solutions can be implemented strictly in the 
network domain. In practice, due to the scale, complexity, and diversity of the application 
domain, the best that network engineers can do is to over provision and prioritize certain 
traffic classes.
	 The only alternative is that application developers create their own services and interven-
tions as an overlay on top of the Internet. On one hand, overlay networks such as Planetlab 
[7] and content delivery networks [23] both exploit the Internet and implement solutions 
to reach past its limitations. For example, Planetlab and similar initiatives [8], [9], [24] 
allow researchers to develop and test new network and distributed computing services, 
which cannot be done on the Internet. On the other hand, the creation of an overlay net-
works results in an additional, often dedicated, infrastructure layer on top of the Internet. 
Thus, developers of these overlay infrastructures require expertise of both the application 
and network domain and need to deal with their interworking. Internet factories help in 
compartmentalizing the complexity of common patterns, so the developer can focus on the 
application-specific issues.
	 Two additional research domains are related: peer-to-peer networks [25] and autonomic 
networks  [26]. In contrast with the overlay networks previously mentioned, peer-to-peer 
networks exist exclusively on end-user hosts. Consequently, peer-to-peer technologies focus 
on delivering a service despite intermittent connectivity, for example, due to hosts joining 
and leaving the network. Autonomic networks use expert systems to enable unsupervised 
operation. The complexity is hidden from the operator by algorithms that automate net-
work management procedures. In this work, network management procedures are auto-
mated as well. Still, peer-to-peer and autonomic networks address only part of a more gen-
eral programming problem in the design and implementation of over-lay infrastructures, 
which is further described in the next section. 
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6.3  Internet Factories

The general programming problem of overlay infrastructures is described next in the form 
of the UPVN architectural framework. Then, the typical pattern of creating and managing 
and overlay infrastructure is presented. Finally, the Internet factory concept is introduced, 
which provides a solution to simplify the programming of overlay infrastructures in the 
application domain.

Figure 42. In the User Programmable Virtualized Networks architectural framework, Network Ele-

ment (NE) functions (AC) are exploited via software objects (A and ANC) in Netapps. Their inter-

faces determine the amount of control Netapps have over network elements.

6.3.1  UPVN Architectural Framework

The design concept of the User Programmable Virtualized Network (UPVN) architectural 
framework is to model network elements as a collection of software objects in the applica-
tion domain [82]. These objects are a manifestation of the network in application domain 
programs (Netapps), which enables developers to abstract, extend, and integrate network 
element services in their applications.
	 For any meaningful behavior of an operational UPVN, software ojects created and 
manipulated by the Netapp must be bound to the network elements providing the  
implementation of the software objects in the network domain. The UPVN archi-
tectural framework leaves this process to implementations of the framework. To  
understand why, the architectural framework is shown Figure 42. Netapps create a col-
lection of software objects, represented as ‘A’s. The amount of knowledge and control a 
Netapp has over the network is determined by ‘A’s Network Components (NCs). So, ‘A’s 
without NCs provide less detail and higher abstraction of the network than ANCs. Each NC 
has one or more corresponding Application Components (ACs) implementing the mani-

Netapp 

A 

A 

A 

A 

A 

A 

NE 

AC NE 

AC 

NE 

AC NE 

AC NE 

AC 

NE 

AC 

ANC 

NC ANC 

NC ANC 

NC 

ANC 

NC ANC 

NC ANC 

NC 



96

festation of the ‘A’s in the Netapp. One may run the ACs in programmable Network Ele-
ments (NEs) such as in the kernel of an operating system, SDN controllers, VMs, or future 
programmable NEs. Depending on the UPVN implementation, ACs can provide specific 
functions, abstractions, or network contexts. In one UPVN, the binding might be imple-
mented with network management interfaces, such as NETCONF [138], to access physical 
routers at specific geographical locations. In another UPVN, discovery services or complete 
programmable network stacks might be used. So, any architectural choice on the binding 
would restrict the design space of UPVNs.
	 A straightforward implementation of a single UPVN follows that of a programmable net-
work. For example, a network consisting of commodity PCs could be provisioned with ACs 
that manipulate packets from the Linux kernel. Consequently, network elements imple-
mented in this way expose (parts of) the network to the application domain, which is shown 
in Figure 41. Initial UVPN prototypes were implemented this way [28]-[30]. Therefore, 
they also share the limitations of programmable networks. Cloud services offer simple in-
terfaces via the Internet to create and manage Virtual Machines (VMs). ACs can also be 
implemented by using VMs. Then, the cloud services interfaces can be used to create and 
manage ACs. An implementation of the UPVN architectural framework using these inter-
faces allows Netapps to integrate the life cycle of UPVNs. 

Figure 43. Netapps describe the actions and their effects to bring a user programmable virtualized 

network towards an optimum. In this research, actions also include infrastructural changes, such as 

creating a new Application Components (ACs) at specific locations in the Internet.
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6.3.2  UPVN Life Cycle

In previous work [139], we showed that a typical design pattern of UPVNs is a control loop 
in which topology, paths, and services are continuously monitored and adjusted to match 
application specific qualities shown in Figure 43. Here, the control loop also includes the 
life cycle of a UPVN. The procedure is similar to the network management cycle [140] of any 
network. In the network management cycle, network engineers and domain experts design 
and implement a (overlay) network, e.g. network topology, capacity, and configuration of 
routing protocols. In the implementation of a UPVN life cycle, application developers face 
the same issues as in the network management cycle, but as a programming problem.
	 As part of the programming problem, developers not only have to implement interwork-
ing between applications and networks, but also the organization the UPVN infrastructure. 
In the extreme, the UPVN design pattern includes all aspects of a network’s life cycle and 
operation: resource planning, performance and fault monitoring, network and application 
service configuration, accounting, and security management to name a few. The UPVN 
architectural framework does not provide mechanisms to hide such details from the devel-
oper, as their implementation is application-specific. The purpose of an Internet factory 
therefore is to provide a structure that simplifies the task of creating and managing UPVNs. 

6.3.3  The Internet Factory Concept

An Internet factory is an implementation of the UPVN architectural framework that simpli-
fies the development of Netapps to create and manage UPVNs. As the equivalent pattern in 
software engineering, an Internet factory encapsulates the complexity of creating UPVNs. 
44 shows that an Internet factory serves as an intermediate between Netapps and UPVNs. 
Its primary purpose is to hide complexity from Netapps, which can be done in two ways: 

	 (1)  Directly via the implementation of common patterns, libraries, and domain specific 
	         languages that developers include or use for programming Netapps, 

	 (2)  Indirectly, via a compiler for example, in which the Internet factory processes the 
	        Netapp and creates a control program containing all the procedures to create and 
	        manage a UPVN.

In both cases, the Internet factory simplifies the process of creating and managing UPVNs 
using pre-defined procedures. For example, network engineers could provide a pre-defined 
procedure to create and configure an IPv6 network (see Section 6.4.4). In the first way, 
Netapps can use specialized applications to implement application-specific interventions 
(see 6.5.3). In the second way, the Netapp serves as a blueprint and the control program 
acts as an executable for creating and managing UPVN (see Section 6.5.2 for a simplified 
example). As any executable, the control program can be parameterized, copied, and dis-
tributed. Control programs can also be part of the collection of pre-defined procedures in 
an Internet factory. The simplest control program encapsulates an instance of the Netapp 
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and Internet factory. For example, a Netapp can offer an interface to create a UPVN accord-
ing to a template (see Section 6.5.2). So, Internet factories allow further compartmental-
ization of complexity through recursion. Via these constructs, an Internet factory facilitates 
developers in building complex solutions that build on solutions previously implemented 
by domain experts.

Figure 44. An Internet factory hides the complexity to create and manage a User Programmable Vir-

tualized Network (UPVN). An Internet factory acts (1) directly or (2) indirectly via a control program. 

The difference is that an Internet factory can further compartmentalize complexity by nesting other 

Netapps and Internet factories. 

	 Once created by the Internet factory, UPVNs become objects with their own state and 
interfaces (hence the arrows from the UPVN back to the Netapp in Figure 44 (1)). A task 
common to all Netapps is the management of nodes and links in the life cycle of their re-
spective UPVNs. As an intermediary between Netapps and UPVNs, Internet factories can 
encapsulate such common tasks. In our implementation, UPVNs inherit life cycle manage-
ment functions from the Internet factory (UPVN collection in Figure 45), as it simplifies 
both the development of Netapps and UPVNs. Therefore, our Internet factory implementa-
tion can also be regarded as a platform on which the Netapps execute (see Section 6.6).

6.3.4   Interoperability with Network and Cloud Management Systems

To a certain degree, UPVNs can be created and managed using cloud service interfaces 
only, though clouds do not yet offer the quality of service that dedicated infrastructures 
offer. In principle, tunneling technologies are sufficient to facilitate any type of virtual link 
between ACs running on one or more clouds. For example, a Netapp could use Ethernet 
VPNs to create an IPv6 network over IPv4 Internet. Clearly, such a UPVN would not ben-
efit from possible optimizations with MPLS [90], SDN, or other methods operators might 
provide to improve performance of connections and virtual machines. 
	 In general, Netapps require interfaces to query, select, and allocate resources from mul-
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tiple clouds, including their interconnection. Intercloud research in part addresses the 
research problems associated with the diversity in interfaces, policies, and capabilities of 
using multiple clouds [141]. As Netapps depend on the Internet factory to provide the 
appropriate interfaces, additional libraries that exploit such optimizations may be imple-
mented. Those additional libraries may also include other resources, such as storage or visu-
alization facilities. In our proof of concept, however, an information service (Section 6.4.1) 
provides only the elementary functions to create and manage UPVNs over multiple clouds. 
Recent work shows how with control over AC placement, we can avoid ‘bad spots’ in the 
Internet, such as routes with unexpected high latency or congestion [142]. An information 
service might provide the intelligence to include such considerations. 

6.4  Design and Implementation of an Internet Factory

In the UPVN architectural framework Netapps implement the design choices and archi-
tecture of programmable networks. Of course, the idea of an Internet factory is to provide 
common patterns to simplify development of Netapps based on these design choices. The 
proof of concept shows a basic architecture of an Internet factory on which libraries can be 
built encapsulating these common patterns.

Figure 45. Sarastro is a web application that implements an Internet factory for infrastructure-as-

a-service clouds. 

	 The architecture of our proof of concept, called Sarastro, is shown in Figure 45. Sarastro 
was implemented as a web application in Ruby [143] using the Sinatra [144] web frame-
work, Redis [145] storage back-end, Fog [146] cloud services library, and EventMachine 
[147] for a-synchronous, event-based data processing. It consists of the following compo-
nents:

	 ·  	 An Information Service, which provides an interface to query, select, and allocate ACs 
		  (VMs) on clouds known to it,
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Figure 45. Sarastro is a web application that implements an Internet factory for infrastructure-
as-a-service clouds.  

The architecture of our proof of concept, called Sarastro, is shown in Figure 45. 
Sarastro was implemented as a web application in Ruby [143] using the Sinatra 
[144] web framework, Redis [145] storage back-end, Fog [146] cloud services li-
brary, and EventMachine [147] for a-synchronous, event-based data processing. It 
consists of the following components: 

• An Information Service, which provides an interface to query, select, and al-
locate ACs (VMs) on clouds known to it, 

• A UVPN collection, which manages the life cycle of UPVNs and implements 
a basic interface for node and link management common to all UPVNs,  

• And Netscripts, which encapsulate the deployment, configuration, and man-
agement complexity of network and application services. 

Sarastro exposes its interfaces to a Web interface and Netapps via a Web API 
(Table II shows the main functions). The Web API is designed according to repre-
sentational state transfer (REST), in which resources are referenced by URLs and 
operations on those resources are defined as GET (retrieve representation of re-
source), PUT (manipulate state of resource), POST, and DELETE (create and de-
lete resource) actions. Representational state transfer also allows a flexible and 
straightforward implementation of the interaction between NCs and ACs in a Web 
interface or programming language, including unexpected ones (see Section 6.5.3). 
The Web interface is a run-time environment in which developers can create and 
manage UPVNs, and inspect their state (see Figure 46). Amongst other state, 
UPVN topology, properties of known cloud locations, and the state of Netscripts 
can be inspected and manipulated.  
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	 ·  	 A UVPN collection, which manages the life cycle of UPVNs and implements a basic 
		  interface for node and link management common to all UPVNs, 

	 ·  	 And Netscripts, which encapsulate the deployment, configuration, and management 
	    	 complexity of network and application services.

Sarastro exposes its interfaces to a Web interface and Netapps via a Web API (Table II 
shows the main functions). The Web API is designed according to representational state 
transfer (REST), in which resources are referenced by URLs and operations on those re-
sources are defined as GET (retrieve representation of resource), PUT (manipulate state 
of resource), POST, and DELETE (create and delete resource) actions. Representational 
state transfer also allows a flexible and straightforward implementation of the interaction 
between NCs and ACs in a Web interface or programming language, including unexpected 
ones (see Section 6.5.3). The Web interface is a run-time environment in which develop-
ers can create and manage UPVNs, and inspect their state (see Figure 46). Amongst other 
state, UPVN topology, properties of known cloud locations, and the state of Netscripts can 
be inspected and manipulated. 

Figure 46. A screenshot of a 163-node UPVN in Sarastro’s web interface.

	 The Netapps for our experiments were predominantly written in the Javascript program-
ming language, which can execute from a web browser. Nowadays, web browsers that sup-
port HTML5 implement advanced technologies, such as event sources and asynchronous 
code execution. As Sarastro is implemented as web application with a REST interface, Ja-
vascript is a suitable language for rapid prototyping of Netapps, including visualization and 
end-user interaction.
	 Sarastro stores credentials for all cloud service providers it may access. Therefore, develop-



101

ers must be authenticated to use the Web interface and to make API calls with Netapps. Au-
thentication is implemented with OpenID [148] against Google accounts. Once authenti-
cated, developers can access cloud credentials and those of all running UPVNs, including 
the SSH certificates to log in to ACs. Next, the implementation of Sarastro’s components is 
further described.

Table ii. Packet manipulation performance 

6.4.1  Information Service

Netapps control the allocation and placement of ACs with the information service. The 
information service implements elementary functions to query, select, and allocate VMs 
from a collection of cloud providers. Sarastro’s information service provides the following 
functions:

	 ·  	 Add, remove, and list cloud service providers (e.g. Amazon EC2 [44], Brightbox [45])

	 ·  	 Query cloud properties (e.g. location, CPU, storage, features, pricing),

	 ·  	 List available VM templates.

6.4.2  AC Management

When Sarastro creates a VM it selects and boots a VM image, bootstraps the VM, and finally 
uploads and executes the Sarastro agent. The VM image determines the operating system 
and prepared software of the VM. We prepared images with a basic Linux install on all 
the cloud locations we use. Cloud service providers do not yet share a single VM format on 
hypervisor (used to execute the VM) technology. Hence, sophisticated software distribution 
via a Content Delivery Network (CDN), for example, is generally not possible across cloud 
service providers [149]. In our implementation, we use Puppet [150] to bootstrap the 
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VM with the run-time dependencies of the Sarastro agent. Then the agent software and a 
secret key is uploaded to the VM and started. Once the agent is up, it may receive requests 
to execute Netscripts, create or delete tunnels (using vTun [151]), and collect monitoring 
information (including error reporting). In short, a Sarastro agent manages an AC.

6.4.3  UPVN collection

The UPVN collection encapsulates UPVN instances and provides a generic interface for 
creating and deleting UPVNs. In essence, the UPVN collection and the UPVN instances it 
does nothing else than maintaining references to VMs. As cloud service providers already 
manage VMs, the UPVN collection only needs to maintain the associations between VMs 
and the UPVNs they belong to. 
	 Netapps can only control the ACs with which they are associated. As in previous work on 
gTBN [105], the access restriction is implemented by associating each UPVN instance 
with a secret key, which is required for each API call to Sarastro agents. The secret key is cre-
ated by Sarastro on creation of a UPVN instance and uploaded to the instantiated VMs via 
SSH. Requests to the web application or agent are processed with HMAC [152] using the 
secret key, a salt, and timestamp. When the secret key is known to Netapps, they can com-
municate directly with the ACs. Multiple Netapps can control a single UPVN when they 
share its secret key. One application of this feature is that control over a UPVN may be dis-
tributed over multiple Netapps (see Section 6.6). Another application is that the moment of 
use of a UPVN can be decoupled from the moment of authorization and provisioning. This 
has been demonstrated for programmable networks in previous work [28].
	 Almost all operations on UPVNs, such as creating a tunnel, require cooperation between 
two or more components. Therefore, the Internet factory also provides a transaction service 
to ensure that such operations can be executed as an atomic unit, and are rolled back on 
failure.

6.4.4  Netscripts and an IPv6 Example

A Netscript is a collection of files consisting of at least one executable script. When a 
Netscript is scheduled for execution, Sarastro collects the ACs on which the script is about 
to execute, and uploads all content associated with the Netscript to the ACs and requests 
the agent to execute the Netscript. As Netscripts have no a priori knowledge about UPVNs, 
Sarastro implements the capability to substitute embedded code (using eRuby [143]) in 
the files before they are uploaded. This way, a Netapp can pass local and global parameters 
to Netscripts, such as unique identifiers for each AC (used in the example presented next) 
and topological information. This allows the development of programming methods and li-
braries in which the programming of individual ACs can be abstracted from the developer.
	 An example of a Netscript that operates on the whole UPVN is one that deploys and con-
figures an IPv6 network service. Adding and removing network elements and links have a 
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direct impact on the configuration of addresses and routing. Rather than setting up static 
routes for the UPVN, which have to be revisited every time the UPVN changes, a Netapp 
can execute an IPv6 Netscript to setup and configure dynamic routing. We developed a 
Netscript for an IPv6 network service. IPv6 is well suited for UPVNs that can progressively 
change their topology.
	 IPv6 provides mechanisms for automatically configuring network interfaces with link lo-
cal address. In IPv4, for example, routing protocols do not work without setting up valid 
network addresses on the interfaces. This forces a developer to explicitly manage all the 
addresses in the on-demand network, complicating the network service configuration. In 
IPv6, the Netscript only has to setup network unique addresses for each network element, 
which can be done by using the unique AC identifier provided by Sarastro. Hence, develop-
ers also do not have to manage addresses, which greatly simplifies the Netscript. 

The steps of the IPv6 Netscript to setup the network then becomes (on each AC):

	 1.	 Install and verify required software (we used Quagga [153]),

	 2.	 Enable forwarding (adjust operating system configuration),

	 3.	 Generate routable address on loopback interface
		   (using unique AC identifier from Sarastro),

	 4.	 Generate routing configuration (add interfaces and areas to the configuration file),

	 5.	 (Re-)start router daemon,

	 6.	 Start interface monitor. The monitor checks if an interface is added or removed and 	
		  updates the routing process (when it cannot do the job itself, which was the case in our  
		  implementation).

In our experiments, simultaneously starting up the IPv6 network service on all the nodes 
lead to problems in route convergence. As a workaround, we introduced a random start-
up time delay. Although the experiments showed that understanding routing protocols in 
UPVNs is crucial to maintain connectivity, this topic is beyond the scope of this thesis. The 
evaluation of routing protocols and their behavior in UPVNs requires further investigation 
and is a research topic on itself.

6.5  Evaluation

The development and prototyping of Sarastro and Netapps was exclusively done using a 
2011 Apple MacBook Air laptop and Amazon EC2 and Brightbox cloud service provid-
ers. Sarastro was developed and deployed on the laptop. In total more than 6400 hours of 

³ https://github.com/rstrijkers/sarastro
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VMs were used to implement the Internet factories and to conduct experiments. Sarastro’s 
source code will also be made publically available³. We evaluate Sarastro by discussing our 
experience with three typical patterns to create a UPVN: an IPv6 UPVN created using the 
Web interface and Netscripts, a control program that creates UPVNs from a description 
given as input, and a dynamic UPVN in which the adaptation to link failures is described 
by a Netapp.

6.5.1  A Worldwide On-Demand Network

We validated Sarastro’s ability to create and manage non-trivial UPVNs for a limited pe-
riod of time without specific network engineering expertise. First, the UPVN was created 
from the Web interface by simply adding new nodes and connecting them using the Web 
interface. Then, the IPv6 Netscript (Section 6.4.4) was executed to create an IPv6 overlay. 
Finally, the UPVN was killed after verifying its operation with standard networking tools 
and gathering basic statistics.
	 In the time the experiments were executed (2012), Amazon EC2 allowed a maximum of 
twenty VMs at each cloud location. Therefore, the resulting UPVN of 163 nodes over 18 
cloud locations in the world (see Figure 47) was a practical upper bound. The UPVN was 
created such that traffic over a connection from one end to the other would start in Ireland 
and terminate in England to form a line topology of 162 hops.  Figure 46 shows the result-
ing UPVN in the Sarastro Web interface.

Figure 47. Number of VMs created at each cloud location that together form a network topology of 

162 hops around the world. The size of the UPVN was limited by the standard Amazon limitation 

of 20 VMs per location.

	 One of the issues in verifying the operational UPVN was how to test its reachability. With 
arbitrary topologies, all paths must be traced to find possible errors. If the network is ar-
ranged in a line topology, simply pinging the ends of the network shows its successful de-
ployment. As it is easy to develop such a Netscript, we started with the creation of a line 
topology over all the possible data centers available to Sarastro. We found that to create 
such a line topology the Netscript had to adjust the standard hop limit in the Linux kernel 
to allow more than 64 hops in the UPVN. 
	 The successful operation of the UPVN was verified with traceroute, ping, and iperf (see 
Figure 48). In a traceroute over all the virtual links, we measured 917 hops over the Inter-
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create a UPVN: an IPv6 UPVN created using the Web interface and Netscripts, a 
control program that creates UPVNs from a description given as input, and a dy-
namic UPVN in which the adaptation to link failures is described by a Netapp. 

6.5.1 A Worldwide On-Demand Network 

 We validated Sarastro’s ability to create and manage non-trivial UPVNs for a 
limited period of time without specific network engineering expertise. First, the 
UPVN was created from the Web interface by simply adding new nodes and con-
necting them using the Web interface. Then, the IPv6 Netscript (Section 6.4.4) was 
executed to create an IPv6 overlay. Finally, the UPVN was killed after verifying its 
operation with standard networking tools and gathering basic statistics. 

In the time the experiments were executed (2012), Amazon EC2 allowed a max-
imum of twenty VMs at each cloud location. Therefore, the resulting UPVN of 163 
nodes over 18 cloud locations in the world (see Figure 47) was a practical upper 
bound. The UPVN was created such that traffic over a connection from one end to 
the other would start in Ireland and terminate in England to form a line topology of 
162 hops. Figure 46 shows the resulting UPVN in the Sarastro Web interface. 
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shows its successful deployment. As it is easy to develop such a Netscript, we start-
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net to connect the VMs. The iperf measurement show the resulting bandwidth of a TCP 
benchmark with long latency, large number of hops, and 7 percent packet loss, which all 
contribute to the result. The many hops (917) in the path also increase the chances of 
congested links in the UPVN, low performance transport networks, and buffer bloat. This 
shows that developers should be aware of the diverse quality of the virtual links in UPVNs. 
To a certain degree, developers can compensate for these qualities in the Netapp’s control 
loop. But, the performance of virtual links will remain a convolution of the performance of 
the underlying networks.  

Figure 48. Results of running basic network tools traceroute, ping, and iperf over the on-demand 

network, and the average VM boot time.

Figure 49. Startup times collected from 413 VMs including the variance. The various cloud loca-

tions show significant differences in startup time.

	 Our Sarastro implementation also gathered basic statistics about booting VMs. The boot 
time in Sarastro is a combination of two measurements: the time it takes for a cloud service 
to report the IP address of the VM and the time it takes until a VM accepts SSH sessions. 
Figure 49 shows these times for 413 VMs over the cloud locations. Remarkable is that in 
Amazon data centers (Figure 49, all zones except gb1-a and gb1-b) the VMs come up fast, 
but the time until a VM accepts an SSH session takes up 70 percent of the average Amazon 
VM boot time. In Brightbox data centers (Figure 49: zone gb1-a and gb1-b), however, 
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demand network, and the average VM boot time. 

The successful operation of the UPVN was verified with traceroute, ping, and 
iperf (see Figure 48). In a traceroute over all the virtual links, we measured 917 
hops over the Internet to connect the VMs. The iperf measurement show the result-
ing bandwidth of a TCP benchmark with long latency, large number of hops, and 7 
percent packet loss, which all contribute to the result. The many hops (917) in the 
path also increase the chances of congested links in the UPVN, low performance 
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Figure 48. Results of running basic network tools traceroute, ping, and iperf over the on-
demand network, and the average VM boot time. 
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mapping a public IP address to private VM IP address must be setup by the end-user, so the 
configuration time also depends on the speed of the API calls to configure the addresses. As 
we have no access to the internal workings of their networks, we can only speculate about 
possible optimizations. 

Figure 50. A control program was developed that creates a UVPN from a JSON description con-

taining nodes, their location, and interconnection. The netscript variable indicates the desired 

network service, in this case IPv6. 

6.5.2  Creating Netapp Templates

We developed a control program that creates a UPVN from a network description. The 
implementation of the control program is basically a Netapp, which can be parameterized. 
Instead of creating the nodes and links as part of the Netapp, developers can just pass a 
description of their network to Sarastro. The description is formatted in JSON [154] and 
defines the location of the network elements, their interconnection, and which Netscripts 
to execute for the desired network service (Figure 50).  
	 The startup time of the UPVNs were measured over an average of three runs (Figure 51). 
Here, the created network topologies were also arranged in a line topology for automated 
verification of the operational UPVN (when from one end the other end is reachable by an 
IPv6 ping). The time to execute the control program is split in two phases: (1) creating the 
nodes and links of the UPVN and (2) the convergence of the routing protocol set up by the 
IPv6 Netscript. With the small network sizes, total start-up time and convergence time of 
OSPF (using default timer configurations) remained constant, which can be seen in the 
end-to-end IPv6 reachability results.
	 The number of concurrently running operations to create network elements was limited 
to 15 to avoid Amazon EC2 denying service due to a flood of service requests. The number 
was determined experimentally and impacts the speed at which UPVNs can be created and 
adapted by Sarastro. Clearly, cloud service providers impose such limits to avoid denial 
of service attacks. We regard such limits as an implementation detail as it is a trade-off 
between pricing of resources for access and control of VMs and pricing of resources of the 
VMs themselves. 
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Figure 51. We developed a control program that creates UPVNs increasing in size. The average 

startup times over three runs per network size are shown. 

Figure 52. We visualized the UPVN topology in Mathematica while it automatically resolved single 

points of failure. The initial UPVN topology is displayed in Figure 53 (top right). 

6.5.3  Automatically Solving Single Points of Failure

We developed a Netapp that adjusts the topology of a UPVN to desired properties, e.g. to 
contain no single points of failure. Instead of developing the algorithms to find and solve 
single points of failure, the control loop was implemented in a general-purpose scientif-
ic computing environment, called Mathematica [75]. Mathematica provides a wealth of 
mathematical, computational, and visualization software, which can be used to address net-
work specific problems. For example, the function ArticulationVertices[G], returns 
the single points of failure in graph G. Following previous work [41], we implemented 
the interfaces of Sarastro in Mathematica. Using those interfaces, Mathematica is capable 
of controlling UPVNs managed by Sarastro. A simple algorithm was developed to solve 
articulation vertices by adding new edges, i.e., by finding and connecting bi-components 
in the network. The implementation in Mathematica, including the topology visualization, 
was less than 20 lines of code. While the function ResolveArticulationVectices[] was 
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running, it visualized the UPVN topology on each event from Sarastro (Figure 52). 
	 We created a UPVN of seven nodes (small but non-trivial topology) using the previously 
shown control program (see UPVN topology in Figure 53). Mathematica was instructed 
to receive events from the created UPVN. Then, using the Sarastro Web interface, we ran-
domly removed links while measuring the ping times between two nodes (nodes 3 and 
6). The UPVN topology allows three alternative paths. So, when a link is removed and an 
alternative path is available, the routing protocol takes another path. From the results, it can 
be observed that OSPFv3 takes 40 seconds to converge to the new topology (again, using 
default timer configurations). Consequently, after removing and adding the third link, the 
two nodes are shortly unreachable. 

Figure 53. Ping results of a Netapp compensating the removal of links from a UPVN.

6.6  Discussion

In general, Netapps use control loops to keep UPVNs within certain operational limits. The 
design space of the control loops in Netapps and their multi-layer dependencies are largely 
unexplored. For example, designers of Netapps create algorithms that decide when and 
where to add ACs. When a Netapps adds or removes an AC, the network protocol will also 
need to adapt to the change as well. We showed how to create a Netapp in which the state 
of the network topology triggers an action to create new links. After a link is created, the 
routing protocol still has to discover and converge to the new state. If the Netapp does not 
take timing of the protocol into account, parts of the network can become unreachable due 
to inconsistent state while converging (see Figure 53). In addition, increasing the number 
of network elements may introduce controllability problems and require decentralization 
of the control loop. In any system, architectural consequences can be expected when the 
system becomes increasingly complex [155]. The design of control loops that adapt with 
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Figure 53. Ping results of a Netapp compensating the removal of links from a UPVN. 

6.6 Discussion 
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limits. The design space of the control loops in Netapps and their multi-layer de-
pendencies are largely unexplored. For example, designers of Netapps create algo-
rithms that decide when and where to add ACs. When a Netapps adds or removes 
an AC, the network protocol will also need to adapt to the change as well. We 
showed how to create a Netapp in which the state of the network topology triggers 
an action to create new links. After a link is created, the routing protocol still has to 
discover and converge to the new state. If the Netapp does not take timing of the 
protocol into account, parts of the network can become unreachable due to incon-
sistent state while converging (see Figure 53). In addition, increasing the number of 
network elements may introduce controllability problems and require decentraliza-
tion of the control loop. In any system, architectural consequences can be expected 
when the system becomes increasingly complex [155]. The design of control loops 
that adapt with the dynamic scaling of UPVNs is a challenge. It will require both 
theoretical knowledge about the controllability of networks and practical experience 
in systems and network engineering. 

In the implementation of our proof of concept, we implicitly created a platform 
or middleware. We assumed that infrastructure-as-a-service clouds and even future 
Intercloud platforms would be sufficient as a run-time platform. But our Internet 
factory also encapsulated state and run-time complexity of operational UPVNs that 
all Netapps shared (see Section 6.4.3). This suggests that there is another distinct 
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the dynamic scaling of UPVNs is a challenge. It will require both theoretical knowledge 
about the controllability of networks and practical experience in systems and network en-
gineering.
	 In the implementation of our proof of concept, we implicitly created a platform or middle-
ware. We assumed that infrastructure-as-a-service clouds and even future Intercloud plat-
forms would be sufficient as a run-time platform. But our Internet factory also encapsulated 
state and run-time complexity of operational UPVNs that all Netapps shared (see Section 
6.4.3). This suggests that there is another distinct component between the Intercloud plat-
form and Internet factory. The question is if separating the state and run-time components 
of our proof of concept would define a different system, such as an operating system for 
Netapps.
	 In this research, we exploited infrastructure-as-a-service clouds for the creation and man-
agement of UPVNs. The more options a developer has to access and control computer and 
network resources, the better UPVNs can be made to match application-specific require-
ments. Further research is needed to understand at which places in the network the integra-
tion is required and most effective. For example, high quality services may only be achiev-
able with precise application-specific control over network and computing resources with 
the increasing density of cells, bandwidth, mobility, and connections in telecom networks 
[5]. In the extreme case, cloud services might expand control into telecom antennas as well. 
If so, will there still be a distinction between cloud and telecom networks?

6.7  Conclusion and Future Work

Both academia and industry acknowledge that the fundamental technologies to create 
application-specific networks on-demand are understood (see Section 6.1 and 6.2). With 
the concept of the Internet Factory and our implementation of it, we showed how these 
fundamental technologies could be combined into a framework that structures the creation 
and management of applications-specific networks. Internet Factories allow developers to 
re-use years of experience and knowledge in network and systems engineering via software 
libraries. We also showed three typical patterns to create UPVNs using infrastructure-as-
a-cloud services.  The evaluation of three Netapps and the remarkable networks they pro-
duced underlines the design and engineering power of Internet factories. Furthermore, 
our use of infrastructure-as-a-service clouds demonstrates how UPVNs can use the physical 
Internet and how programmable network elements and networks can be part of the Inter-
net even if network operators do not facilitate the programming of their Internet routers. 
Even more, these cloud services make the introduction of new network services, protocols, 
and architectures less costly and complex as they are defined in software and encapsulated 
by VMs.
	 We have shown how to create Netapps that adapt an overlay infrastructure towards a 
desired state. This can be done as a reaction to certain (networking) events but also for 
other reasons. Networks that continuously migrate over the Internet and cloud locations are 
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harder to attack, for example. Indeed, this work shows how to deal with distributed systems 
where one cannot abstract network details away. 
	 We think that our use of Mathematica only reflects a glimpse of advanced systems behav-
ior that can be created. We expect that large and complex ICT systems, such as cyber physi-
cal systems, future networks, and ICT systems to support smart cities are prime candidates 
for applying our results. As Internet factories show how to construct complex ICT systems, 
our focus will shift to the generation of advanced behavior and services of these systems. In 
Internet factories, the control loop of a Netapp embodies the algorithms and abstractions 
required to create and manage such complex ICT systems and it is here where we position 
our future research. 
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Conclusions and 
Future Work

7

Be prepared for reality to add a 
few interfaces of its own.

Eberhardt Rechtin
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7.1  Conclusions

Long before the academics and industry invented Network Function Virtualization (NFV) 
and Software Defined Networks (SDN), the work described in this thesis already showed the 
practical feasibility of their underlying concepts. For example, one of the possible methods 
to process packets from application programs presented in UPVN is now the cornerstone 
of SDN technologies. The industry is hoping that programmable networking technologies 
will consolidate the plethora of protocols, technologies, and architectures created over the 
years. Without a common concept for programming the application and network domain, 
the best networks engineers can provide are sophisticated end-to-end connections.
	 To exploit the flexibility of programmable networks, the network operator needs in-depth 
knowledge about the application domain. From the application developer’s perspective, 
this paradox applies as well, as choices about where to place application code, what traffic to 
filter, where to redirect traffic, and how to recover from failures all depend on network state 
and technologies. The only alternative is that both the network and application domain sup-
port a common concept for programming the application and network domain.
	 This thesis shows that the concept of Internet factories make the complexity of program-
mable networks manageable for application developers and network engineers. The con-
cept of Internet factories envisions two types of programs. One type of program, the Ne-
tapp, is responsible for creating and deploying customized Internets on a programmable 
network. The other type of program, the distributed application(s) itself, uses the produced 
Internet and is initiated and configured by the Netapp. The result is an environment in 
which crosscutting concerns between networks and applications are defined, as the Inter-
net as a whole, including its applications, is described in one program: the Netapp. 
	 The Internet factories concept is the result of the research problem addressed in this the-
sis: how to create a methodical process for programming computer networks from application 
programs. The following sections reiterate the research questions and developed concepts 
to solve the research problem. Conclusions are drawn from their contributions.

	 1)		 What are the common patterns for the design of applications that use 
			   programmable networks and how can these patterns be described in 
			   an architectural framework? 

	 The research in Chapter 2, which pre-dates the work of SDN and NFV, identifies elementary 
programmable networking concepts with which developers can exploit the entire design space 
of programmable networks and related technologies. The resulting architectural framework, 
called User Programmable Virtualized Networks (UPVN), describes elementary components 
(ACs and NCs), functions, and services to create application programmable networks.  
	 In this thesis, the UPVN architectural framework was successfully used as a scientifically 
validated reference framework for creating, analyzing, and using programmable networks 
from application programs. The telecom industry is currently faced with the consolation of 
a plethora of protocols, services, and architectures using programmable network technolo-
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gies, such as SDN and NFV. Also in this context, UPVN can be used as a common reference 
framework for creating, analyzing, and using solutions based on programmable network-
ing.

	 2)		 How can programmable networks support multiple application programs that 
		  control networks in application-specific ways? 

	 Generalized Token-Based Networking (GTBN) provides a solution for partitioning a 
network infrastructure into multiple distinct programmable networks. GTBN uses cryp-
tographically encoded tokens embedded in application-generated traffic to provide ap-
plications their own programmable network environment. The use of such tokens allows 
dynamic binding of network services and their run-time deployment and configuration 
on a network infrastructure, possibly crossing multiple domains. The research presented 
in Chapter 3, 4 and 6 also demonstrates GTBNs capability to associate any granularity 
of programmable network behavior with specific applications: from application-specific 
paths (such as in Chapter 4) to the creation and management of complete virtualized IPv6 
networks (Chapter 6). The conclusion is that sooner or later, SDN and NFV technologies 
will implement GTBN. Applications will have to be bound to virtual networks and using 
existing protocol information is simply not possible for differentiation of applications, us-
ers, and tailor-made services in the network domain.

	 3)		 How can programmable networks be controlled from application 
			   programs, and how do controllers affect application design?

	 The integration of network management in a distributed system is characterized by a con-
trol loop that collects data about network state, infers decisions, and configures nodes in 
a programmable network. Whether the control loop is centralized or distributed, the total 
amount of (distributed) state managed by a control loop affects application design. The 
controller is part of application programs, in later work described as Netapps, with which 
developers express operational boundaries of the application. The amount of detail of net-
work state expressed in the controller reflects the network dependencies of an application 
program. Consequently, the scalability of network is limited by what can be managed by 
the application program’s control loop.
	 We have also shown the consequence of hidden control loops in programmable networks. 
For example, the use case in Section 6.5.3 shows the implementation of a control loop in 
which new links are created when the UPVN contains single points of failure. The hidden 
control loop is the routing protocol that keeps topology information up-to-date. The pre-
sented application does not take into account the time it takes to converge after each inter-
vention. The general conclusion from this example is that developers need to understand 
the controllability of a network, such that actions lead to a desired state. This is an essential 
topic for further study.
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	 4)		 How to structure the development, deployment, and management programmable 
			   network applications that make crosscutting concerns manageable?

	 The implementation of any UPVN starts with an empty canvas of programmable network 
elements and an application program controlling those network elements. In previous work, 
UPVNs, even simple ones, had to be created from scratch (see Chapter 2-4). Chapter 6 in-
troduces the Internet factories concept that combines the previous contributions to answer 
the research problem. The Internet factories concept describes the methodical process to 
program network infrastructure from application programs, embodied by Netapps. Imple-
mentations of Internet factories enable Netapps developers to use standardized components 
and common patterns, i.e. software libraries, in the development, deployment, and manage-
ment of specific Internets. A developed Internet Factory proof of concept, called Sarastro, 
established that essentially the network is just a manifestation of the Netapp. Therefore, the 
contribution of Internet Factories can also be summarized as: the Netapp is the network.

Figure 54. A complex ICT system created from several, distributed, application parts contained by 

virtual Internets. 

7.2  Future Work

Research in Netapps and Internet factories is continuing in at least two directions. In the 
first research direction, the research focus shifts from programmable network technologies 
to the design and implementation of Netapps. How to create Netapps that can scale to the 
size of the Internet itself? In other words, what are the controllability and programmability 
limits of Netapps?
	 In the second research direction, further research is needed on the tooling of Internet 
factories. For example, tooling is required that can deal with practical issues, such as denial 
of service attacks, recovery from errors, and financial aspects. Tooling can also be developed 
to build Netapp collections (i.e., an Appstore for Netapps), which can be used to create and 
customize complex ICT systems. Another research question is whether Internet factories 
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Figure 54. A complex ICT system created from several, distributed, application parts contained 
by virtual Internets.  

7.3 Outlook 

Figure 54 shows a scenario that becomes possible when applying the concepts 
presented in this thesis. This figure shows a global telecommunication infrastruc-
ture (1). The Internet (2) is just one of the complex ICT systems using (3) network 
infrastructures. Each complex ICT system is supported by its own specific Internet, 
which might consist of billions of devices (4). These complex ICT systems expose 
services (5) that can be used by other ICT systems. The Internet itself becomes the 
ecosystem to create and deploy large and complex ICT systems. The ecosystem 
consisting of an Internet, its infrastructure, and applications, are managed by 
Netapps. Figure 54 also shows that in the future there might be many Internets, 
including legacy Internets (6). While some of these Internets will only support ap-
plications, other Internets will serve specific user groups, such as a children’s Inter-
net.  

The described scenarios might sound extreme, but it is becoming reality. In a 
few years from now, the analysis of a network will reveal many Internets (see Fig-
ure 55). Some of them might have nodes that migrate from lamppost to lamppost to 
deliver mobile users the best possible service. Produced by Internet factories, these 
Internets host complex ICT systems from many collaborating organizations. They 
run on top of virtual machines in a highly dynamic network infrastructure continu-
ously adapting to their operating environments. 

To quote Bill Gates: ‘The Internet is becoming the town square for the global 
village of tomorrow’. There are just town squares for many global villages and 
there is no single Internet that can fulfill all the needs for each global village. 
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should include optimizations for target platforms (programmable network architecture) 
or if Internet factories might assume a hardware abstraction layer of common functions 
implemented in network infrastructure. 

7.3  Outlook

Figure 54 shows a scenario that becomes possible when applying the concepts presented in 
this thesis. This figure shows a global telecommunication infrastructure (1). The Internet 
(2) is just one of the complex ICT systems using (3) network infrastructures. Each com-
plex ICT system is supported by its own specific Internet, which might consist of billions of 
devices (4). These complex ICT systems expose services (5) that can be used by other ICT 
systems. The Internet itself becomes the ecosystem to create and deploy large and complex 
ICT systems. The ecosystem consisting of an Internet, its infrastructure, and applications, 
are managed by Netapps. 54 also shows that in the future there might be many Internets, 
including legacy Internets (6). While some of these Internets will only support applications, 
other Internets will serve specific user groups, such as a children’s Internet. 
	 The described scenarios might sound extreme, but it is becoming reality. In a few years 
from now, the analysis of a network will reveal many Internets (see Figure 55). Some of them 
might have nodes that migrate from lamppost to lamppost to deliver mobile users the best 
possible service. Produced by Internet factories, these Internets host complex ICT systems 
from many collaborating organizations. They run on top of virtual machines in a highly dy-
namic network infrastructure continuously adapting to their operating environments.
	 To quote Bill Gates: ‘The Internet is becoming the town square for the global village of to-
morrow’. There are just town squares for many global villages and there is no single Internet 
that can fulfill all the needs for each global village.

Figure 55. An augmented reality app on a mobile phone shows a cross section of a telecom antenna 

with multiple virtual Internets [image: Marc Makkes].
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Figure 55. An augmented reality app on a mobile phone shows a cross section of a telecom an-
tenna with multiple virtual Internets [image: Marc Makkes]. 
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NCS 		  NC Collection Support module
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NPU 		  Network Processor Unit
NUS 		  Network Utility Service
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OS 			  Operating System
OSI 		  Open Systems Interconnection
OSPF 		  Open Shortest Path First
PBT 		  Provider Backbone Traffic
PC 			  Personal Computer
QoS 		  Quality of Service
REST 		  Representational State Transfer
RFC 		  Request for Comments
RISC		  Reduced Instruction Set Computing
RM 		  Resource Manager
RMI 		  Remote Method Invocation
RTSM 		  Run-Time System Manager
SDN 		  Software Defined Network
SOAP		  Simple Object Access Protocol
TBN 		  Token Based Network
TBS 		  Token Based Switch
TCP 		  Transmission Control Protocol
TINA 		  Telecommunication Information Networking Architecture
TTS 		  Token Transaction Service
UCLP 		  User Controlled Light Paths
UDDI 		  Universal Description, Discovery and Integration
UDP 		  User Datagram Protocol
UPVN 		  User Programmable Virtualized Network
VLAN 		  Virtual LAN
VLBI 		  Very Long Baseline Interferometry
VLC 		  Video LAN Client
VM 		  Virtual Machine
VNE 		  Virtual Network Element
VNS 		  Virtual Network Service
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IN
TERN

ET FACTO
RIES

This thesis contributes a novel concept for introducing new network 
technologies in network infrastructures. The concept, called Internet 
factories, describes the methodical process to create and manage ap-
plication-specific networks from application programs, referred to as 
Netapps. An Internet factory manufactures and deploys Netapps, each 
with their own set of technologies and services. To create Netapps de-
velopers use standardized components and common patterns, i.e. soft-
ware libraries, capturing years of experience and knowledge in network 
and systems engineering. In essence, the Netapp describes the life 
cycle of a network from its creation, operation, to its decommissioning. 
Therefore, the contribution of this thesis can be summarized as: the Ne-
tapp is the network. It is in the design and implementation of Netapps 
that we find new challenges in network research for years to come.
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