HPC IN THE MANY-CORE ERA:
GRAPH PROCESSING CHALLENGES

Ana Lucia Varbanescu,
University of Amsterdam, The Netherlands

Contributions from Merijn Verstraaten, Souley Madougou (UvA),
Yong Guo, Stijn Heldens, the Graphalytics team (TUDelft).

I

ic

”‘k

d

You

-

||

7’

Click to LOOK INSIDE!

om

A\
Y

Sequence and Genome Analysis

HICORD EDITRON

O vertrek

N2\

N

Graph analytics at work

A= & O T N
BTN O NSNS
- .._ _,Inu l\% A ‘)WV,,\ \/‘//MMWV\A\//‘P /

9292 onderweg

= Nieuws ¥
=]

Verstoringen ¥

In April 2015 ...

364,000,000+

REGISTERED MEMBERS

1M+ 3M+
CANADA RUSSIA
CANADA o ~——
115M+ e . M+
UNITED STATES OF ™M 30M+ w.ﬂ
AMERICA = b 1M+ INDIA) g
~_ MEXICO SAUDI ARABIA —=— 1M+ 1M+
>~ —_— 1M+ HONG KONG ~ REPUBLIC
P ONG KONG
1M+ THAILAND OF KOREA
1M+ VENEZUELA o AM+ 1M+ -
ECUADOR . COLOMBIA UNITED ARAB EMIRATES —e®
21M+ M+
%—0 2M+ 4M+ AUSTRALIA
AN+ P SOUTH AFRICA
e -
.&
ARGENTINA 1M+
4 NEW ZEALAND
e)
UNITED KINGDOM
18M+
10M+ FRANCE AM+
INDONESIA
TM+ ALY
3M+
5M+ NETHERLANDS PHILIPPINES
SPAIN
6M+ 2M+
MALAYSIA
2M+ BELGIUM
4M+ TURKEY 1M+
SINGAPORE
2M+ SWEDEN

1M+ DENMARK
1M+ RELAND

1M+ nNorway

1M+ coRTUGAL

Classical analytics

Me
_

1 Statistics

O “How many connections do | have?” ‘
0 Traversing
(U~

(11 b 1a4
| [10)\W© elf - 0 [] [) 2

No textbook algorithms exist for some of these operations.
If they exist, they probably need changing.

around Berkeley.”
0 Mining You

o “Find the most influential Graph Processing researcher
in Berkeley.”

Large Scale, Graph Processing
N

0 Large-scale
O Very large data
® Partitioning and parallel processing are mandatory!
o Complex analytics
® Absolute or approximate ...
O

" B «,:', " _"“\,' ‘

0 Graph processing ; ﬁ'“"j ' {'\

0 Data-driven computations

O Irregular memory accesses
® Poor data locality

0 Unstructured problems
O Low computation-to-data access

Large Scale Graph Processing
N

0 Graph processing is (very) data-intensive
O 10x larger graph => 100x or 1000x slower processing
0 Graph processing becomes (more) compute-intensive

O More complex queries => 2x slower processing

01 Graph processing is (very) dataset-dependent

O Unfriendly graphs => 2x slower processing

High performance enables larger graphs and

support for more complex analytics.

Large Scale Graph Processing on GPUs?

Agenda

-4
0 Graphitti:
Investigating the performance factors in graph processing
0 HyGraph:
Yet another GPU-enabled system for graph processing
0 Graphpedia:
Are graphs really everywhere?
0 Graphalytics:

The Landscape of Graph Processing: a Quantitative View

The Landscape of Graph Processing
_—

Performance

* Systems for graph processing
* Separate users from backends Custom
* Think Giraph, GraphMat,

Dedicated
Systems

Specify application

Choose the hardware

Implement & optimize

Think Graph500

Generic

* Use existing large scale
distributed systems

- * Mapping is difficult

i >
* Parallelism is “free” Development

* Think MapReduce Effort

oo

Our goal: Graphitti
—

Operations

Graph
Operations

...

Given HW platforms

modeling Given a workload (app+data)

Generic parameterized Fully Parallel
hardware model workload model
N

-~

— .
N/(Model j\-.
" Fitting |

N

Find the best alorithm and/or HW for the workload

Hardware configuration Parallelized workload &
partitioned dataset

- How difficult can it be ¢l

Experiment 1: CPU and/or GPU *

0 Question:
0 Which multi-/many-core architectures are suitable for
graph processing?
0 Setup:

O Three parallelized algorithms

o Use different graphs

0 Use different hardware CPU

GPU

*A.L.Varbanescu et al, “Can Portability Improve
Performance? A Graph Processing Case-Study” ICPE’15

Algorithms: BFSAPSP>BC

4
0 Graph traversal (Breadth First Search, BFS)

0 Traverses all vertices “in levels”

0 All-Pairs Shortest Paths (APSP) 1
O Repeat BFS for each vertex 2) (3) (4,

0 Betweenness Centrality (BC) ofG 7)18)
O APSP once to determine paths
O Bottom-up BFS to count paths 9 @ @ @

o0 Implementation in OpenCL*
O Same algorithm

o CPU- and GPU-specific tuning applied

*Ate Penders MSc thesis
“Accelerating graph processing using modern accelerators”

Data sets & devices

Wikipedia Talk Network
California Road Network
Rodinia Graph 1M
Stanford Web Graph

EU Email Communication Network
Star

Chain

Epinions Social Network
Rodinia Graph 64K
Wikipedia Vote Network
Rodinia Graph 4K

Abbreviation
WT
CR
™M
SW
EU
ST
CH
ES
64K
VW
4K

Vertices
2,394,385
1,965,206
1,000,000

281,903

265,214

100,000

100,000

75,879
64,000
7,115
4000

Edges
5,021,410
5,533,214
6,000,000
2,312,497

420,045

99,999
99,999

508,837

393,216

103,689

25,356

Diameter

9
850
36
740
13

1
99,999
13

28

7

19

Avg. Degree
2,10
2,81
6,00
8,20
1,58
0,99
1,00
6,70
6,14

14,57
6,38

1 Devices

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

GeForce GTX 480
Tesla C2050 / C2070

BFS — normalized
=

1
0.9
0.8
0.7
0.6

¥ Performance depends on the diameter and degree:
¥ Large diameter => CPU
W High degree => GPU

- HINEE IEEER
SCHEENEN NN N

WT CR 1M SW EU CH ST ES 64K WV 4K

B Tesla (GPU) [GTX (GPU)

0

B Xeon (CPU)

APSP - normalized

1

0.9
0.8
0.7
0.6
0

GPUs always win due to the (enforced) high

0 parallelism of our solution.

o 1lllli1111
1111111110

WT CR 1M SW EU CH ST ES 64K WV 4K

B Tesla (GPU) [GTX (GPU)

0

B Xeon (CPU)

BC - normalized
S

1

0.9
0.8
0.7
0.6

0.5
P Atomic operations for counting paths => variable

0. performance due to variable contention!

WT CR 1M SW EU CH ST ES 64K WV 4K

B Xeon (CPU) [Tesla (GPU) M GTX (GPU)

0.2
0.1
0

Lessons learned

0 Increased algorithm complexity => increase
parallelism => improved performance ¢

0 Dataset properties + data representation =>
increase parallelism => improved performance ¢

0 Synchronization can be a hidden bottleneck

0 We have no clear understanding of graph “sizes”

O # vertices or # edges? Diameter? Other properties?
0 Graphs seem to be CPU or GPU friendly

O Heterogeneous processing?

Experiment 2: BFS traversals

.
0 Question:

O Is there a best BFS algorithm?
m On GPUs ¢

m Overall ¢
0 Setup:

O Run different BFS implementations
® LonestarGPU
® Warp-grain

o Run on different graphs

m 6 datasets

o Run on different hardware

Normalized on naive GPU, kernel

I
100 8 CUDA-01

m CUDA-02

m CUDA-04
m CUDA-08
m CUDA-16

m CUDA-32

¥ [lonestar]

B [topology-

0,01 atomic]
! arrill]

Orders of magnitude performance difference.

No “overall” winner.

Lessons learned

N .
1 Depending on the graph ...
O Large variability in performance (fastest to slowest ratio)

O The relative performance of BFS implementation varies.

m Fastest on one graph CAN BE slowest on another graph.

0 Data representation and data structures make a BIG
difference

0 A naive CPU implementation can be competitive with
some of the GPU implementations.
0 On small graphs (GPUs are underutilized)
0 When data transfer is an issue (think BFS)

Experiment 3: PageRank™

L
0 Question:

0 How does PageRank depend on data?
0 Setup:

O Run different PageRank implementations
m Edge-based (+variations)
® Vertex-based, pull (+variations)
m Vertex-based, push (+variations)

o Run on different graphs
m SNAP datasets
m Synthetic datasets

o Run on different GPUs
® Only K20 shown here

*M.E.Verstraaten et al, “Quantifying the Performance
Impact of Graph Structure on Neighbours Iteration
Strategies” PELGA'15 under review

Graphs

#V HE Triangles Diameter 90% Diam
as-Skitter 1.696.415 11.095.298 28.769.868 25 6
cit-Patents 3.774768 16.518.948 7.515.023 22 9,4
email-EvAll 265.214 420.045 267.313 14 4,5
Facebook 4.039 88.234 1.612.010 8 4,7
GPlus 107.614 13.673.453 1.073.677.742 6 3
roadNet-CA 1.965.206 2.766.607 120.676 849 500
roadNet-TX 1.379.917 1.921.660 82.869 1.054 670
soc-Livejournal 4.847.571 68.993.773 285.730.264 16 6,5
Twitter 81.306 1.768.149 13.082.506 7 4,5
web-BerkStan 685.230 7.600.595 64.690.980 514 9,9
web-Google 875713 5.105.039 13.391.903 21 8,1
wikiTalk 2.394.385 5.021.410 9.203.519 9 4

Normalised runtime

PageRank on K20 (lower is better)

K20

1.0

0.8}

0.6}

o
a

0.2}

0.0

=
Edge-based
Struct Edge-based
Vertex Pull NoDiv

Vertex Pull-based
Vertex Push Warp-8-24|
Vertex Push-based

Not the large variation we were expecting:
* Edge-based: always (close-to) best

‘9// /p 4/ ’

6‘4
7 (< < /L @
. /)(:9 Qy 2 «F Q?)_7_ /Oo, ’f‘% %
2 %
(S

- PageRank in detail

Computing PageRank
—

0 Iterative algorithm

0 Every iteration updates all vertices:

1—d PR(w)
PR(v) = v dWEEN:(V))

Execution time (real graphs)

]
1000
100
10
' ¥ edge
1 - — ¥ vpush
0,1 B nodiv
oo For only three graphs edge-based is worse.
01 -
& oy
o"'& &

Attempt to model (1)

4
Statistical modeling:

0 Step 1. Collect data

O Execution time, performance counters, ...

We have plenty of data |

... or do we?

Result = performance prediction

How to get relevant data?

-1
0 Find graphs with similar properties
0 What is similar?

0 Use graph generators

O How fine grained are they? How diverse?

0 Use synthetic graphs

Build your own graph generator to fine-tune graph
properties.

Harder than we thought...*

*M.E.Verstraaten et al, “Synthetic Graph Generation for Systematic
Exploration of Graph Structural Properties”, PELGA'16

Attempt to model (2)

Analytical modeling
0 Step 1. Build a work model
0 Step 2. Define a GPU parallel execution model

0 Step 3. “Deploy” the work model on the GPU model

Result = performance prediction

Skip

Edge-based

function EDGEBASED(edge)
origin <— edge.origin
dest < edge.destination

: , _ origin.pagerank
outgoingRank < origin.degree

dest.newRank.atomicAdd(outgoingRank)
end function

Vertex-centric push
—

function VERTEXPUSH(vertex)

if vertex.degree # 0 then

: |, vertex.pagerank
OUth’ngRank) vertex.degree
end if

for nbr € vertex.neighbours do
nbr.newRank.atomicAdd(outgoingRank)
end for
end function

Vertex-centric pull
—

function VERTEXPULL(vertex)
newRank = (Q

for nbr € vertex.neighbours do
newRank — nbr.pagerank

nbr.degree
end for
vertex.newRank < newRank
end function

Build a work model

0 Graph processing is memory bound => Use *only*
read, write, and atomics

Tpush = D * |V| * Tread + 2 % |V| * Twrite + (lVI + |E|) * Tatom

Tpull — (3 * |E| + 2% |V|) * Tread + 3 * IVl * Twrite + |V| * Tatom

Tnopiv = (|[E| +4%|V|) % Tread + 3 * |V| * Tyrite + V| * Tatom

Tedge = (3% |E|+ 2% |V|) * Tread + 2 * |V | * Twrite + (|V| + | E|) * Tatom|

0 Validated using hardware counters

Define a GPU execution model

S
0 Work distribution:
0 Workers = #SM * cores_per_SM

o Simplistic: T = Work / Workers
® How about the scheduling? Warps and such?

Use performance metrics to define an approximation

of the schedule.

“Deploy” work on GPU

e
0 Calibrate the values
o T _read, T_write, T_atom, ...

0 Find the right approximation for the schedule

0 What are the most important GPU metrics that
correlate with performance?

O Achieved occupancy? Multiprocessor activity?
Reads?Writes? ...

Achieved occupancy
N

0,1

0,9
0,8 I
0,7 I
0,6 I
0,5 I
|
0,4 edge
I B vpush
0.3 I Hvpull
0,2 I M nodiv

Current “coarse” approximation
B

0 Ignore latencies

0 Bad idea if the differences between them are large
0 Use occupancy to “reduce” the number of workers
0 Real_workers = #SMs * cores_SM * occcupancy

0 Rank performance

O No accurate numbers, but we mostly care about ranking

Performance ranking
—

111l
11111
11111
11111
iRnininln

“Decent” approximation of the ranking.

Not yet perfect ...

More general problem

]
0 Which graph properties impact performance most?
o Still trying a statistical approach here
O PR: degree distribution, ordering, ...
0 Can we use them to estimate occupancy?
O PR: yes
O BFS: not yet

0 In general: attempt to understand the impact of
properties on occupancy.

O Statistical modeling again? Simulation?
Microbenchmarking?

How about BFS?
N

K20
1.0 I || 1 1
Bl Edge-based
1 Vertex Pull-based
1 Vertex Push-based
0.8}]
. |
£
< 0.6}
2
©
Q
v
©
c 0.4}
(@)
2
0.2}
; A :
e, %, &, o, & &, s, & o, %, %
2 % 4, % C 2 s, e

Graph-centric framework

!
0 Understand graph features

0 What makes a graph “specia

0 Select the best algorithm for a given graph

—> Sample
Input L
Graph 1
=>| Characterization
Hardware
Best performing

Algorithms hardware-software
mix

Application

Lessons learned

S
0 Performance gaps are quite large

0 Graph properties matter!

0 Scale also matters!

0 Machine learning is not a solution for everything

O There are not enough graphs out there to drive
statistical approaches.

Execution time (Graph500 graphs)
O

BTW — edge is not always better ...

Scale matters, too!

oo

Conclusions

The Landscape of Graph Processing

Performance 2.5 heterogeneous systems:
* Totem + Distributed Totem
* HyGraph

* Systems for graph processing

* Separate users from backends

* Think Giraph, GraphMat,

Dedicated
Systems

Specify application

Choose the hardware

Implement & optimize

Think Graph500

@

Generic

* Use existing large scale
distributed systems

* Mapping is difficult

P >
* Parallelism is “free” Development

* Think MapReduce Effort

|

- GPU-enabled systems

HyGraph

Conclusions

GPU-enabled graph processing™

0 MapGraph

o CPU, single- and multi-GPU versions

O Vertex-centric API
0 Medusa

o Single-node, multiple GPUs

O Programmability-driven, based on BSP
0 Totem

O Heterogeneous, multi-GPU
O Based on BSP
O Also looks at partitioning

0 We know of ...
O CuSha
o Gunrock
o Ligra
o...

*Yong Guo et. al, “An Empirical Performance
Evaluation of GPU-Enabled Graph-Processing Systems”,
CCGrid 2015

Setup: Algorithms & Systems

N .
0 Algorithms
o BFS (traversal)
O PageRank
0 Weakly connected components

0 Hardware: GPU-enabled nodes in DAS4
0 GTX480 (most results), GTX580, and K20

1 Processing systems:

O Totem - GPU-only and Hybrid
O Medusa — single- and multi-GPU
0 MapGraph — single-GPU

Setup: datasets
B

Graphs \Y E d D | MaxD
Amazon (D) 262,111 1234877 18 5 5
WikiTalk (D) 2,388,953 5018 445 0.1 2 | 100,022
Citation (D) 3,764,117 16 511,742 0.1 4 770
KGS (U) 293 290 223903820 260 76 18969
Dotal eague (U) 61,171 101740632 | 27190 | 1663 17,004
Scale-22 (U) 2,394 536 128 304030 22 54 | 163499
Scale-23 (U) 4611439 258 672,163 12 56 | 257910
Scale-24 (U) 8,870,942 520,760,132 0.7 59 | 406417
Scale-25 (U) 17062472 | 1047207019 04 61 | 639,144

V and E are the vertex count and edge count of the graphs. d is the link density

(x10~%). D is the average vertex out-degree. Max D is the largest out-degree.
(D) and (U) stands for the omginal directivity of the graph. For each onginal
undirected graph, we transfer it to directed graph (see Section II-B1).

Setup: datasets

Graphs v E d D | Max D

WikiTalk (D) 2,388,953 5018445 i 100,022
Citation (D) 3,764,117 16,511,742 i 770
KGS (U) 293290 22 390,820 . 18,969

Dotal eague (U) 61,171 101,740 632 719 ; 17,004
2,394 536 128 304 030 163,499

V and E are the vertex count and edge count of the graphs. d is the link density
(x10~%). D is the average vertex out-degree. Max D is the largest out-degree.
(D) and (U) stands for the omginal directivity of the graph. For each onginal
undirected graph, we transfer it to directed graph (see Section II-B1).

BFS [algorithm]

—
O—L
T

Algorithm run time [ms]

—_
o
o

o,

s, G 3 A
Strong dependency on the graph.

Totem is the worst perfomer.

Medusa and MapGraph cannot handle large graphs.

BFS [full]

Execution time [ms]

Totem becomes the best performer !

Lessons learned
B 1

0 Brave attempts to enable the use of GPUs *inside™
graph processing systems
01 Every system has its own quirks

O Lower level programming allows more optimizations,
better performance.

O Higher level APIs allow more productivity.

0 Data pre-processing and data structure are crucial
to both performance and capability.

0 No clear winner, performance-wise.

- HyGraph

Is there a case for heterogeneous computing in
graph processing?

Conclusion

So how about Totem?
B

0 The only heterogeneous graph processing system
O Single node CPU+multi-GPU
0 Communication optimization
0 What's “wrong” /missing 2
O Static partitioning only
O BSP model

o It's not distributed
® We fixed that*

*Yong Guo et. al, “Design and Experimental Evaluation of
Distributed Heterogeneous Graph-Processing Systems”,

CCGrid 2015

Challenges for heterogeneous GP
N

0 Granularity mismatch

o The CPU requires coarse granularity (i.e., larger jobs),

O The GPU requires fine granularity (i.e., many tiny jobs).
0 Scheduling & load-balancing

0 Jobs need to be assigned to the CPU and/or the GPU.
0 CPU-GPU Expensive Communication

o CPU and GPU need to communicate to synchronize

An alternative: HyGraph™

-~ f
0 Simple vertex-centric API

0 Code is generated for CPU (OpenMP) and GPU
(CUDA)

0 Data is replicated on all devices

O Largest graph in our experiments: 0.24GB of memory

0 The graph is split into blocks®* (groups of vertices)
o CPU: one block per thread
0 GPU: one block per SM

* S.Heldens et al, “HyGraph: Fast Graph Processing on Hybrid
CPU-GPU Platforms by Adaptive Load-Balancing” (in submission)

** Similar to shards in G-shards in CuSha and matrix rows GraphMat

HyGraph key points
N

0 Pre-processing

O Reorganizes the graph in a block-based structure
0 Granularity
o Different block sizes for CPU and GPU

0 Scheduling

O Cooperation between CPU and GPU only at block-
level

0 Communication-computation overlap

0 As soon as a block is finished, results are sent

® We use CUDA streams and multi-job kernels

HyGraph CPU+GPU processing

]
0 Jobs dispatched on CPU and GPU

CPU
Thread #1 | I
Thread #2 | | |
Transfers W
CPU-GPU | Y
GPU-CPU | | [| |
A A 7\ A A7 A %

GPU
SM #1 || I | | Il |
sm#2 [— |

HyGraph results: performance

Il CPU-only scheduling I GPU-only scheduling [dynamic scheduling
- BFS, K20 PR, K20 CC, K20 SSSP, K20
S 67 0.8 0.8 0.8
230 0.6 0.6 0.6
g 31 0.4 0.4 0.4
$ 24
2911 I' "] 0.2 0.2 0.2
S 0 0.0 0.0 0.0
® R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26
o BFS, K40 PR, K40 CC, K40 SSSP, K40
> 6 0.8 0.8 0.8
L 0.6 0.6 0.6
S 3 0.4 0.4 0.4
@ 2 0.2 0.2 0.2
& 0 0.0 0.0 0.0
® R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26
- BFS, TITANX PR, TITANX CC, TITANX SSSP, TITANX
El) 2.5 25 2.5
X 2 2.0 2.0 2.0
S 3 15 1.5 15
Q 5 1.0 1.0 1.0
3 1 0.5 0.5 0.5
% 0 0.0 0.0 0.0
® R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26 R1 R2 R3 G24G25G26

HyGraph results: performance

]

- BFS, K40 PR, K40

5 6 - 0.8 ¢

X3 0.6 4

S 3 04

£ 2; jl 0.2}

$ o LN JI 0.0 -

© Rl R2 R3 G24G25G26 R1 R2 R3 G24G25G26

The GPU outperforms the CPU.
The hybrid performance improvement is between 3% and 37.3%

Dynamic scheduling adds little overhead, and outperforms static
partitioning.

HyGraph results: size
—

0 1.8B edges graph
0 K20 : 32.7% , K40 : 79%, TITANX : 84.3%72

BFS on R4 PR on R4

10 25
0
5 8 20
= -29.4% -33.2%
= 6 15
5
= 4 10
8 2 '76.4%-81-1% -76.0%'81.8%
n

0 ; ; ; 0 . . ;

CPU CPU CPU CPU CPU CPU CPU CPU

+ + + + + +
K20 K40 TITANX K20 K40 TITANX

Lessons learned

N .
0 Hybrid graph processing possible
0 HyGraph provides this “for free”
0 Reasonable impact in performance (5-37%)
o Significant impact as “extra-buffer” for GPU memory

0 Performance gain and simplicity of design due to
GPU improvements

0 Graph ordering and block-size tuning are essential
for performance

O Static partitioning is foo general to fit iterative
graph processing

oo

Conclusions

0 Graphpedia:
Are graphs really everywhere?
0 Graphalytics:

The Landscape of Graph Processing: a Quantitative View

Conclusions

- GraphPedia

Are graphs really everywhere?

Conclusion

Graphs, anyone?

]
0 Two sources to obtain graphs

O Public repositories

Maintainer Established|#Datasets |#Formats/Domains |[Statistics

Problems: small, static & closed, manually managed, no filtering

capabilities, ...

O Synthetic generators (20+ in the last 20+ years)

Problems: slow, no archiving, no fine-grain control of the generated

graphs

® Internet Graph Generator

Next-Generation Network Archives™
B

0 Improve Variety
O Collect different graphs of different kinds from different domains
0 Encourage Sharing.

O Meeting space for researchers to exchange both knowledge and data.
0 Enable Different Storage formats.

0 Focus on Usability.

O Allow users to browse and search the large collection of available
datasets.

0 Include synthetic datasets.
O Provide access to synthetic datasets

O Create datasets on-demand

0 Provenance & impact.
O Include datasets provenance

O Measure & track impact
*S.Heldens et al., “Towards the Next Generation of

Large-Scale Network Archives”, PELGA'16

GraphPedia

GraphPedia
Team

Search >
; 5 Meta-Data
, Web-interface o [Pownload ff Format Converter Storage
ser N
GraphPedia Upload : ® L Dataset
—3| [= sraon rame - »| Quality Assurance —_; Storage
<« | = L I F——
— Processing Platform@
Generate B
Graph Generators
Metric Calculation E

Challenge #1: Efficiency

Challenge #2: Impact analysis

Challenge #3: Improving synthetic generation

- Graphalytics

Conclusion

Graphalytics, in a nutshell

O

O

The graph & RDF

An LDBC benchmark* LDBC $ benchmark reference

Many classes of algorithms used in
practice

Diverse real and synthetic datasets

-
~
-

& PR
Diverse set of experiments Unveromer ey SCIENCE

VAN AMSTERDAM

representative for practice

Granula for manual choke-point analysis

W Huawer

ORACLE

Modern software engineering practices

Supports many platforms

http:/ /graphalytics.ewi.tudelft.nl

https: / /github.com /tudelft-atlarge /graphalytics /

G=validated, on GitHub

Implementation status v=vaiidetion sage

Benchmarking and tuning performed by vendors

Processing time (s) + Edges[+Vertices] /s

10° 10! 102 10% 10 10° 10° 107 10° 10! 10% 10° 10 10° 10° 107

Processing time (s)
102 10?107

R1(2XS)

_ Which system is the best?
R e It depends...
P— Algorithm + Dataset + Metric
R - T I
oms 00ms 15 a0s OK, but ... why is this system better m

PR

dges) per second

for this workload for this metric?

Granula Visualizer (bottleneck analysis)
N

Display Ievel:+3]
76.1% 80.1% 84.0% 88.0% 92.0%
[T T I 1

BspWorker-M

BspWorker-1

BspWorker-2

BspWorker-3

BspWorker-4

BspWorker-5

| 1 | J (s)
0.00 6.64 13.28 19.93 26.57

Network Utilization
109.9 91.0

=
2
A A :
- §73.3 60.6 %,
: N :
= =
g z
5 3
o 366 303 5
BT S A
L 3
-

0.0 0.0

0.00 6.63 18.27 19.90 26.53

ExecutionTime (s)

o

Take home message

0 Graph processing *is* high performance computing
0 Due to/for data scale and analysis complexity

0 HPC hardware is useful for graph processing

O yet performance is (for now) unpredictable

0 Performance is dependent on all three “axes”

O Performance = f (dataset, algorithm, hardware)

O Dataset = different graphs, different representation
O Algorithm = variations of parallelization
o0 Hardware = CPU/GPU/... 2

Take home message i

0 (Part of) What we do: graph processing + GPUs
O Performance measurement
O Graph processing benchmarking — Graphalytics
O Performance analysis and prediction - Graphitti

O Heterogeneous and Distributed system design —
HyGraph

O Next generation graph archives - GraphPedia

P-A-D triangle

_f
Algorithm

In progress
Algorithms for different
data types and graph

Overstudied
Performance is enabled
Portability is disabled

—
Datase " Platform

Understudied

No systematic findings yet

Intuitive correlations

Must be correlated with the algorithm

- Backup slides

WCC [algorithm]

103 T T T T T T
M1 T-G mmm
T-H & MG
)
£
2
qJ S Y N T
.§1O
= N
2
c _
S a1
=10 1 KEJ K
®)
fe))
<C
10°

N
Strong dependency

No best/worst performer.

More crashes of MapGraph.

PageRank [algorithm]

104 T T T T T T
M] T-G 1.
T-H KXX MG £
£10° ¢
()]
=
5102 F
£
=
S. 1l
210
10°

A,
Most compu
Totem performs worst.

For large graphs, Totem-GPU is worse than hybrid.

Multi-GPU scalability
N

SN T-G —©0— T-H-GPU ~—F—
T-H —&— M
£ \
Q
= 2000
-
S
E |
= 1000
3
<
0

i 2 3 4 5 6 7 8

Platforms can use multiple GPUs efficiently.

Load balancing matters.

GPU versions

No guaranteed gain for newer GPUs

Larger graphs seem to benefit more from K20m.

