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Graph analytics at work



In April 2015 … 



Classical analytics

¨ Statistics 
¤ “How many connections do I have?” 

¨ Traversing 
¤ “How can I reach Prof. X?”

¨ Querying
¤ “Find all professionals in Graph Processing 
around Berkeley.“

¨ Mining
¤ “Find the most influential Graph Processing researcher 

in Berkeley.”

Me

You

No textbook algorithms exist for some of these operations. 
If they exist, they probably need changing.



Large Scale, Graph Processing 

¨ Large-scale
¤ Very large data

n Partitioning and parallel processing are mandatory!
¤ Complex analytics

n Absolute or approximate … 
¤ Data might evolve in time 

n Fast processing or new algorithms? 

¨ Graph processing
¤ Data-driven computations
¤ Irregular memory accesses

n Poor data locality
¤ Unstructured problems
¤ Low computation-to-data access ratio



Large Scale Graph Processing

¨ Graph processing is (very) data-intensive
¤ 10x larger graph => 100x or 1000x slower processing

¨ Graph processing becomes (more) compute-intensive
¤ More complex queries => ?x slower processing 

¨ Graph processing is (very) dataset-dependent
¤ Unfriendly graphs => ?x slower processing

High performance enables larger graphs and
support for more complex analytics. 



Large Scale Graph Processing on GPUs?  

?



Agenda

¨ Graphitti:
Investigating the performance factors in graph processing

¨ HyGraph:
Yet another GPU-enabled system for graph processing 

¨ Graphpedia:
Are graphs really everywhere? 

¨ Graphalytics: 
The Landscape of Graph Processing: a Quantitative View 



The Landscape of Graph Processing

Custom

Generic

Dedicated
Systems

• Specify application

• Choose the hardware 

• Implement & optimize

• Think Graph500

• Use existing large scale

distributed systems 

• Mapping is difficult

• Parallelism is “free”

• Think MapReduce

• Systems for graph processing 

• Separate users from backends

• Think Giraph, GraphMat, .... 

Performance

Development 
Effort



Graphitti



Our goal: Graphitti

Given HW platforms 

Given a workload (app+data)

Find the best alorithm and/or HW for the workload



How difficult can it be ?!



Experiment 1: CPU and/or GPU *

¨ Question: 
¤ Which multi-/many-core architectures are suitable for 

graph processing? 

¨ Setup:
¤ Three parallelized algorithms
¤ Use different graphs 
¤ Use different hardware 

Control
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U

Cache

CPU

GPU
*A.L.Varbanescu et al, “Can Portability Improve 
Performance? A Graph Processing Case-Study” ICPE’15 



Algorithms: BFSèAPSPèBC

¨ Graph traversal (Breadth First Search, BFS) 
¤ Traverses all vertices “in levels”  

¨ All-Pairs Shortest Paths (APSP)
¤ Repeat BFS for each vertex

¨ Betweenness Centrality (BC)
¤ APSP once to determine paths  
¤ Bottom-up BFS to count paths 

¨ Implementation in OpenCL*
¤ Same algorithm
¤ CPU- and GPU-specific tuning applied

*Ate Penders MSc thesis 
“Accelerating graph processing using modern accelerators”



Data sets & devices

¨ Devices  

Abbreviation Vertices Edges Diameter Avg. Degree

Wikipedia Talk Network WT 2,394,385 5,021,410 9 2,10 
California Road Network CR 1,965,206 5,533,214 850 2,81 
Rodinia Graph 1M 1M 1,000,000 6,000,000 36 6,00 
Stanford Web Graph SW 281,903 2,312,497 740 8,20 
EU Email Communication Network EU 265,214 420,045 13 1,58 
Star ST 100,000 99,999 1 0,99
Chain CH 100,000 99,999 99,999 1,00
Epinions Social Network ES 75,879 508,837 13 6,70 
Rodinia Graph 64K 64K 64,000 393,216 28 6,14 
Wikipedia Vote Network VW 7,115 103,689 7 14,57 
Rodinia Graph 4K 4K 4000 25,356 19 6,38 

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz
GeForce GTX 480
Tesla C2050 / C2070



BFS – normalized 
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Performance depends on the diameter and degree:
Large diameter => CPU
High degree => GPU



APSP - normalized
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BC - normalized
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Atomic operations for counting paths => variable 
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Lessons learned

¨ Increased algorithm complexity => increase
parallelism => improved performance ?

¨ Dataset properties + data representation => 
increase parallelism => improved performance ?

¨ Synchronization can be a hidden bottleneck
¨ We have no clear understanding of graph “sizes” 

¤ # vertices or # edges? Diameter? Other properties?

¨ Graphs seem to be CPU or GPU friendly
¤ Heterogeneous processing? 



Experiment 2: BFS traversals

¨ Question: 
¤ Is there a best BFS algorithm? 

n On GPUs ?
n Overall ? 

¨ Setup:
¤ Run different BFS implementations 

n LonestarGPU
n Warp-grain

¤ Run on different graphs 
n 6 datasets 

¤ Run on different hardware 
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Orders of magnitude performance difference.
No “overall” winner.



Lessons learned

¨ Depending on the graph … 
¤ Large variability in performance (fastest to slowest ratio)
¤ The relative performance of BFS implementation varies. 

n Fastest on one graph CAN BE slowest on another graph.

¨ Data representation and data structures make a BIG 
difference

¨ A naive CPU implementation can be competitive with 
some of the GPU implementations.
¤ On small graphs (GPUs are underutilized)
¤ When data transfer is an issue (think BFS) 



Experiment 3: PageRank*

¨ Question: 
¤ How does PageRank depend on data?

¨ Setup:
¤ Run different PageRank implementations 

n Edge-based (+variations)
n Vertex-based, pull (+variations)
n Vertex-based, push (+variations)

¤ Run on different graphs 
n SNAP datasets 
n Synthetic datasets 

¤ Run on different GPUs 
n Only K20 shown here *M.E.Verstraaten et al, “Quantifying the Performance 

Impact of Graph Structure on Neighbours Iteration 
Strategies” PELGA’15 under review 



Graphs

#V #E Triangles Diameter 90% Diam

as-Skitter 1.696.415 11.095.298 28.769.868 25 6

cit-Patents 3.774.768 16.518.948 7.515.023 22 9,4

email-EuAll 265.214 420.045 267.313 14 4,5
Facebook 4.039 88.234 1.612.010 8 4,7
GPlus 107.614 13.673.453 1.073.677.742 6 3

roadNet-CA 1.965.206 2.766.607 120.676 849 500

roadNet-TX 1.379.917 1.921.660 82.869 1.054 670

soc-Livejournal 4.847.571 68.993.773 285.730.264 16 6,5

Twitter 81.306 1.768.149 13.082.506 7 4,5

web-BerkStan 685.230 7.600.595 64.690.980 514 9,9

web-Google 875.713 5.105.039 13.391.903 21 8,1

wikiTalk 2.394.385 5.021.410 9.203.519 9 4



PageRank on K20 (lower is better)

Not the large variation we were expecting:
• Edge-based: always (close-to) best



PageRank in detail



Computing PageRank

¨ Iterative algorithm 
¨ Every iteration updates all vertices:

PageRank for Beginners™

PR(v) =
1� d

|V | + d

X

w2N(v)

PR(w)

⇢(w)

d Damping factor

PR(v) PageRank of vertex v

⇢(v) Out-degree of vertex v

N(v) Neighbours of vertex v :
w 2 N(v) () (w , v) 2 E

Merijn Verstraaten Neighbour Iteration Strategies
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For only three graphs edge-based is worse. 



Attempt to model (1)

Statistical modeling:
¨ Step 1. Collect data

¤ Execution time, performance counters, …  

¨ Step 2. Use a modeling tool => prediction model
¤ BlackForest @ UvA

¨ Step 3. Apply model on new instance 

Result  = performance prediction

We have plenty of data !
… or do we? 



How to get relevant data?

¨ Find graphs with similar properties
¤ What is similar? 

¨ Use graph generators
¤ How fine grained are they? How diverse?

¨ Use synthetic graphs

Build your own graph generator to fine-tune graph
properties.

Harder than we thought…* 
*M.E.Verstraaten et al, “Synthetic Graph Generation for Systematic 

Exploration of Graph Structural Properties”, PELGA’16



Attempt to model (2)

Analytical modeling
¨ Step 1. Build a work model 
¨ Step 2. Define a GPU parallel execution model
¨ Step 3. “Deploy” the work model on the GPU model 

Result  = performance prediction

Skip



Edge-based



Vertex-centric push
Push-based PageRank

function VertexPush(vertex)
if vertex .degree 6= 0 then

outgoingRank  vertex .pagerank
vertex .degree

end if
for nbr 2 vertex .neighbours do

nbr .newRank .atomicAdd(outgoingRank)
end for

end function

Merijn Verstraaten Neighbour Iteration Strategies



Vertex-centric pull
Pull-based PageRank

function VertexPull(vertex)
newRank = 0
for nbr 2 vertex .neighbours do

newRank += nbr .pagerank
nbr .degree

end for
vertex .newRank  newRank

end function

Merijn Verstraaten Neighbour Iteration Strategies



Build a work model

¨ Graph processing is memory bound => Use *only* 
read, write, and atomics 

¨ Validated using hardware counters 



Define a GPU execution model 

¨ Work distribution: 
¤ Workers = #SM * cores_per_SM
¤ Simplistic: T = Work / Workers 

n How about the scheduling? Warps and such? 

Use performance metrics to define an approximation
of the schedule.



“Deploy” work on GPU

¨ Calibrate the values 
¤ T_read, T_write, T_atom, … 

¨ Find the right approximation for the schedule 

¨ What are the most important GPU metrics that 
correlate with performance? 
¤ Achieved occupancy? Multiprocessor activity? 

Reads?Writes? … 



Achieved occupancy
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Current “coarse” approximation

¨ Ignore latencies 
¤ Bad idea if the differences between them are large

¨ Use occupancy to “reduce” the number of workers
¤ Real_workers = #SMs * cores_SM * occcupancy

¨ Rank performance 
¤ No accurate numbers, but we mostly care about ranking 



Performance ranking
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“Decent” approximation of the ranking.
Not yet perfect … 



More general problem

¨ Which graph properties impact performance most?
¤ Still trying a statistical approach here 
¤ PR: degree distribution, ordering, … 

¨ Can we use them to estimate occupancy? 
¤ PR: yes 
¤ BFS: not yet 

¨ In general: attempt to understand the impact of 
properties on occupancy. 
¤ Statistical modeling again? Simulation? 

Microbenchmarking? 



How about BFS?



Graph-centric framework

¨ Understand graph features
¤ What makes a graph “special”

¨ Select the best algorithm for a given graph

Input
Graph

Sample

Characterization

Algorithms

Application

Hardware
Best performing 

hardware-software
mix



Lessons learned

¨ Performance gaps are quite large

¨ Graph properties matter! 
¨ Scale also matters! 

¨ Machine learning is not a solution for everything 
¤ There are not enough graphs out there to drive 

statistical approaches.



Execution time (Graph500 graphs)
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BTW – edge is not always better … 
Scale matters, too! 



Questions?

Conclusions



The Landscape of Graph Processing

Custom

Generic

Dedicated
Systems

• Specify application

• Choose the hardware 

• Implement & optimize

• Think Graph500

• Use existing large scale

distributed systems 

• Mapping is difficult

• Parallelism is “free”

• Think MapReduce

• Systems for graph processing 

• Separate users from backends

• Think Giraph, GraphMat, .... 

Performance

Development 
Effort

GPU-
based

2.5 heterogeneous systems:

• Totem + Distributed Totem 

• HyGraph



GPU-enabled systems 

HyGraph

Conclusions



GPU-enabled graph processing* 

¨ MapGraph
¤ CPU, single- and multi-GPU versions 
¤ Vertex-centric API

¨ Medusa
¤ Single-node, multiple GPUs
¤ Programmability-driven, based on BSP

¨ Totem
¤ Heterogeneous, multi-GPU
¤ Based on BSP
¤ Also looks at partitioning 

¨ We know of …
¤ CuSha
¤ Gunrock
¤ Ligra
¤ …

*Yong Guo et. al, “An Empirical Performance
Evaluation of GPU-Enabled Graph-Processing Systems”, 

CCGrid 2015



Setup: Algorithms & Systems 

¨ Algorithms 
¤ BFS (traversal)
¤ PageRank 
¤ Weakly connected components 

¨ Hardware: GPU-enabled nodes in DAS4
¤ GTX480 (most results), GTX580, and K20

¨ Processing systems:
¤ Totem - GPU-only and Hybrid 
¤ Medusa – single- and multi-GPU
¤ MapGraph – single-GPU



Setup: datasets



Setup: datasets

CSR-represented graphs fit in memory (GTX480)
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Strong dependency on the graph. 
Totem is the worst perfomer. 

Medusa and MapGraph cannot handle large graphs. 



BFS [full] 
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Totem becomes the best performer ! 



Lessons learned

¨ Brave attempts to enable the use of GPUs *inside* 
graph processing systems

¨ Every system has its own quirks 
¤ Lower level programming allows more optimizations, 

better performance.
¤ Higher level APIs allow more productivity. 

¨ Data pre-processing and data structure are crucial 
to both performance and capability.

¨ No clear winner, performance-wise.



Is there a case for heterogeneous computing in 
graph processing?

HyGraph

Conclusion



So how about Totem? 

¨ The only heterogeneous graph processing system 
¤ Single node CPU+multi-GPU
¤ Communication optimization 

¨ What’s “wrong”/missing ?
¤ Static partitioning only 
¤ BSP model 
¤ It’s not distributed 

n We fixed that* 

*Yong Guo et. al, “Design and Experimental Evaluation of 
Distributed Heterogeneous Graph-Processing Systems”, 

CCGrid 2015



Challenges for heterogeneous GP

¨ Granularity mismatch
¤ The CPU requires coarse granularity (i.e., larger jobs), 
¤ The GPU requires fine granularity (i.e., many tiny jobs). 

¨ Scheduling & load-balancing
¤ Jobs need to be assigned to the CPU and/or the GPU. 

¨ CPU-GPU Expensive Communication 
¤ CPU and GPU need to communicate to synchronize



An alternative: HyGraph*

¨ Simple vertex-centric API 
¤ Code is generated for CPU (OpenMP) and GPU 

(CUDA)

¨ Data is replicated on all devices
¤ Largest graph in our experiments: 0.24GB of memory

¨ The graph is split into blocks** (groups of vertices)
¤ CPU: one block per thread
¤ GPU: one block per SM 

* S.Heldens et al, “HyGraph: Fast Graph Processing on Hybrid
CPU-GPU Platforms by Adaptive Load-Balancing” (in submission)

** Similar to shards in G-shards in CuSha and matrix rows GraphMat



HyGraph key points

¨ Pre-processing
¤ Reorganizes the graph in a block-based structure

¨ Granularity
¤ Different block sizes for CPU and GPU

¨ Scheduling
¤ Cooperation between CPU and GPU only at block-

level

¨ Communication-computation overlap 
¤ As soon as a block is finished, results are sent 

n We use CUDA streams and multi-job kernels 



HyGraph CPU+GPU processing 

¨ Jobs dispatched on CPU and GPU



HyGraph results: performance



HyGraph results: performance 

The GPU outperforms the CPU.
The hybrid performance improvement is between 3% and 37.3%

Dynamic scheduling adds little overhead, and outperforms static
partitioning.



HyGraph results: size 

¨ 1.8B edges graph 
¤ K20 : 32.7% , K40 : 79%, TITANX : 84.3%2



Lessons learned 

¨ Hybrid graph processing possible 
¤ HyGraph provides this “for free” 
¤ Reasonable impact in performance (5-37%)
¤ Significant impact as “extra-buffer” for GPU memory

¨ Performance gain and simplicity of design due to 
GPU improvements 

¨ Graph ordering and block-size tuning are essential 
for performance

¨ Static partitioning is too general to fit iterative 
graph processing 



Questions?

Conclusions



Agenda

¨ Graphitti:
Investigating the performance factors in graph processing

¨ HyGraph:
Yet another GPU-enabled system for graph processing

¨ Graphpedia:
Are graphs really everywhere? 

¨ Graphalytics: 
The Landscape of Graph Processing: a Quantitative View 

Conclusions



Are graphs really everywhere? 

GraphPedia

Conclusion



Graphs, anyone? 

¨ Two sources to obtain graphs
¤ Public repositories 

¤ Synthetic generators (20+ in the last 20+ years)
n Graph500
n R-MAT
n LDBC DataGen
n Internet Graph Generator

Problems: small, static & closed, manually managed, no filtering 
capabilities, … 

Problems: slow, no archiving, no fine-grain control of the generated
graphs



Next-Generation Network Archives*

¨ Improve Variety
¤ Collect different graphs of different kinds from different domains 

¨ Encourage Sharing. 
¤ Meeting space for researchers to exchange both knowledge and data.

¨ Enable Different Storage formats. 
¨ Focus on Usability. 

¤ Allow users to browse and search the large collection of available 
datasets.

¨ Include synthetic datasets. 
¤ Provide access to synthetic datasets
¤ Create datasets on-demand

¨ Provenance & impact. 
¤ Include datasets provenance
¤ Measure & track impact

*S.Heldens et al., “Towards the Next Generation of
Large-Scale Network Archives”, PELGA’16 



GraphPedia

Challenge #1: Efficiency

Challenge #2: Impact analysis

Challenge #3: Improving synthetic generation



Graphalytics

Conclusion



Graphalytics, in a nutshell

¨ An LDBC benchmark*
¨ Many classes of algorithms used in 

practice
¨ Diverse real and synthetic datasets
¨ Diverse set of experiments 

representative for practice
¨ Granula for manual choke-point analysis
¨ Modern software engineering practices
¨ Supports many platforms

http://graphalytics.ewi.tudelft.nl
https://github.com/tudelft-atlarge/graphalytics/



Implementation status
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Processing time (s) + Edges[+Vertices]/s
75

Which system is the best?
It depends…

Algorithm + Dataset + Metric

OK, but … why is this system better 
for this workload for this metric?



Granula Visualizer (bottleneck analysis) 



Summary



Take home message

¨ Graph processing *is* high performance computing
¤ Due to/for data scale and analysis complexity

¨ HPC hardware is useful for graph processing
¤ yet performance is (for now) unpredictable

¨ Performance is dependent on all three “axes”
¤ Performance = f (dataset, algorithm, hardware)

¤ Dataset = different graphs, different representation
¤ Algorithm = variations of parallelization
¤ Hardware = CPU/GPU/… ?



Take home message

¨ (Part of) What we do: graph processing + GPUs 
¤ Performance measurement
¤ Graph processing benchmarking – Graphalytics
¤ Performance analysis and prediction - Graphitti
¤ Heterogeneous and Distributed system design –

HyGraph
¤ Next generation graph archives - GraphPedia



P-A-D triangle

Algorithm

Dataset Platform

Overstudied
Performance is enabled
Portability is disabled

In progress 
Algorithms for different
data types and graphs

Understudied
No systematic findings yet
Intuitive correlations
Must be correlated with the algorithm 



Backup slides
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Strong dependency on the graph. 
No best/worst performer.

More crashes of MapGraph.



PageRank [algorithm]
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Most compute-intensive.
Totem performs worst. 

For large graphs, Totem-GPU is worse than hybrid.



Multi-GPU scalability

Platforms can use multiple GPUs efficiently.
Load balancing matters.  



GPU versions 

No guaranteed gain for newer GPUs
Larger graphs seem to benefit more from K20m.


